Cho hai mặt phẳng (P) và (Q) có giao tuyến b và đường thẳng a//b. khẳng định nào dưới đây là sai?
A. Ta có a//(Q) và a//(P)
B. Nếu a ⊂ (Q) thì a//(P)
C. Nếu a ⊂ (P) thì a//(Q)
D. Có thể xảy ra trường hợp a//(Q) đồng thời a//(P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M thuộc c suy ra M nằm trên mp(Q)
M thuộc a suy ra M nằm trên mp(R)
M cùng thuộc mp(R) và (Q) suy ra M nằm trên giao tuyến của mp(R) và (Q)
Như vậy , M thuộc b.
– Ta có: a ∩ b = {M}
Mà a ⊂ (P); b ⊂ (Q)
Nên M ∈ (P) và M ∈ (Q)
Do đó M là giao điểm của (P) và (Q).
Mà (P) ∩ (Q) = c, suy ra M ∈ c.
Vậy đường thằng c đi qua điểm M.
– Giả sử trong mặt phẳng (P) có a ∩ c = {N}.
Khi đó N ∈ a mà a ⊂ (R) nên N ∈ (R)
N ∈ c mà c ⊂ (Q) nên N ∈ (Q)
Do đó N là giao điểm của (R) và (Q).
Mà (Q) ∩ (R) = b
Chọn D
Từ (1) (2) suy ra A thuộc đường tròn đường kính BC bằng 4 không đổi
Do đó d thuộc mặt trụ có khoảng cách giữa đường sinh và trục bằng 2
Đáp án D
Ta đi chứng minh BC chính là khoảng cách giữa hai đường thẳng a và b, BC = 4:
Từ (1) (2) suy ra A thuộc đường tròn đường kính BC bằng 4 không đổi
Do đó d thuộc mặt trụ có khoảng cách giữa đường sinh và trục bằng 2
a) (Q) cắt (P) theo giao tuyến b suy ra b thuộc (Q).
Do đó a và b không thể chéo nhau.
b) Vì a // (P) và b thuộc (P) suy ra a và b không thể cắt nhau.
Đáp án A