K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

3 tháng 3 2020

A B C 60 40 K

Xét \(\Delta ABC\) có \(\widehat{B}=40^o,\widehat{A}=60^o\)

\(\Rightarrow\widehat{BCA}=80^o\)

Mà : CK là tia phân giác của góc \(\widehat{BCA}\)

\(\Rightarrow\widehat{BCK}=\widehat{ACK}=\frac{80^o}{2}=40^o\)

Xét \(\Delta BKC\) có : \(\widehat{KBC}=\widehat{KCB}=40^o\)

\(\Rightarrow\Delta BKC\) cân ở K

\(\Rightarrow KB=KC\) (đpcm)

Tự vẽ hình nha

a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung

=> bằng nhau (cạnh huyền - góc nhọn)

=> AB = Be (2 cạnh tương ứng) => abe cân

b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)

4 tháng 3 2020

Còn câu c,d thì sao bạn?

6 tháng 8 2023

DK≠DH không bằng được bạn 

a: Xét ΔABD và ΔHBD có

BA=BH

góc ABD=góc HBD

BD chung

=>ΔABD=ΔHBD

b: Sửa đề: DK=DC

ΔABD=ΔHBD

=>góc BAD=góc BHD=90 độ

=>DH vuông góc BC

Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>AK=HC và DK=DC

c: BA+AK=BK

BH+HC=BC

mà BA=BH và AK=HC

nên BK=BC

BK=BC

DK=DC

=>BD là trung trực của KC

=>B,D,I thẳng hàng

9 tháng 7 2019

A B C D H E F K

Xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (đl)

góc BAC = 80(Gt); góc ABC = 60 (gt)

=> góc ACB = 180 - 80 - 60 = 40

=> góc ACB < góc ABC < góc BAC ; tam giác ABC 

=> AB < AC < BC (đl)

b, xét tam giác ABE và tam giác DBE có : BE chung

AB = BD (gt)

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

=> tam giác ABE = tam giác DBE (c-g-c)

c,  xét tam giác BAD có : AB = BD (gt) => tam giác BAD cân tại B (đn)

mà góc ABC = 60 (gt)

=> tam giác BAD đều (tc)

=> AD = AB (Đn)

BE là phân giác của góc ABC (Gt) => góc ABE = 1/2.góc ABC mà góc ABC = 60 (gt)

=> góc ABE = 12.60 = 30 

Xét tam giác ABE có : góc ABE + góc AEB + góc BAE = 180 (đl)

góc BAE = 80 (gt)

=> góc AEB = 180 - 80 - 30 = 70 

=> góc AEB < góc BAE ; tam giác BAE 

=> AB < BE hay AD < BE (đl)

d,  không biết

11 tháng 6 2021

câu d mình chỉ biết là dùng tính chất 3 đường trung tuyến thui.

29 tháng 12 2021

a: Xét ΔABI và ΔADI có

AB=AD

\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

Suy ra: BI=DI

a: Ta có: ΔAMB cân tại A

mà AE là đường trung tuyến

nên AE là đường phân giác

b: Ta có: ΔAMB cân tại A

mà AE là đường trung tuyến

nên AE là đường cao