Cho tam giác ABC cân tại B. Gọi Bx là tia phân giác của góc ngoài tại đỉnh B. Chứng minh Bx //AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4b
cho tam giác ABC cân tại B. Gọi Bx là tia phân giác của góc ngoài tại đỉnh B. Chứng minh Bx // AC.
Chú ý:Góc ngoài tam giác bằng tổng số đo 2 góc trog tam giác không kể với nó
Vậy góc(A1)+góc(A2)=góc(B)+góc(C) .(1)
Do Am là tia phân giác ngoài tại đỉnh A của tam giác ABC nên góc A1=góc (A2).(2)
Lại có tam giác ABC cân tại A do(AB=AC) nên góc (B)=góc(C).(3)
Từ(1);(2) và (3) =>góc(A1)+góc (A1)=góc (C)+góc(C)
Suy ra góc( A1)=góc(C) mà 2 góc này nằm ở vị ttrí so le nhau
Do đó Am//BC . (dpcm)
a/ Ta có AB=AC(gt)
Mà D và E là trung điểm của AB và AC
=> AD=BD=AE=EC
Xét tam giác ABE và tam giác ACD có:
AB=AC(gt)
Góc A chung
AE=AD(cmt)
=> tam giác ABE= tam giác ACD(c-g-c)
b/ Ta có tam giác ABE= tam giác ACD(c-g-c)
=> góc ABE=góc ACD
=> góc KBC=góc KCB vì tam giác ABC cân tại A
Vậy tam giác KBC cân tại K
theo đề bài cho trước , bạn vẽ một hình ra nhé :
như hình vẽ ta có Bx là tia phân giác của góc B
\(\Rightarrow\)DBC = 80 : 2 = 40 ( độ )
và : ACB+( C12)= 180 độ ( kề bù )
mà : Cy là tia phân giác của góc ngoài đỉnh C
nên C1= 50 độ
Do đó BCD = ACB+ C1= 80 độ + 50 độ = 130 độ
từ đó suy ra : DBC +BCD+BDC= 180 độ ( tổng 3 góc một tam giác )
\(\Rightarrow\)BDC= 180- ( 80 +130 )=10 độ
Xong rùi nha , chúc bạn học giỏi nhé ! à có mấy gocs mk vẽ trong hình là ko cần thiết vì có thể giải 2 cách nhá
vì tam giác ABC cân tại C(gt)
suy ra: góc A= góc C
góc ZBC là góc ngoài của tam giác ABC
suy ra:góc zBC= gócA + gócC
Mà góc zBC = góc B1 + góc B2
suy ra: gócA+ gócC= gócB1+ góc B2
suy ra: gócB2= gócC
do đó Bx//AC( vì có 2 góc đồng vị bằng nhau )