Tìm x, biết:
a) 2-x = 2 ( x - 2 ) 3 ; b) 8 x 3 - 72x = 0;
c) ( x - 1 , 5 ) 6 + 2 ( 1 , 5 - x ) 2 = 0; d) 2 x 3 +3 x 2 +3 + 2x = 0;
e) x 3 - 4x- 14x(x - 2) = 0; g) x 2 (x + 1)- x(x + 1) + x(x - 1) = 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2-x)^3+(2+x)^3-12x(x+1)=0
=>\(8-12x+6x^2-x^3+8+12x+6x^2+x^3-12x\left(x+1\right)=0\)
=>\(12x^2+16-12x^2-12x=0\)
=>16-12x=0
=>4-3x=0
=>x=4/3
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)
\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)
\(x^2+6x+9-x^2+9=0\)
\(6x+18=0\)
\(6x=-18\)
\(x=-3\)
Vậy x=-3
\(b,5x^3+20x=0\)
\(5x\left(x^2+4\right)=0\)
\(Th1:5x=0=>x=0\)
\(Th2:x^2+4=0\)
\(x^2=-4\)(vô lý)
Vậy x=0
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow x^4+x^3-10x^2+1=x^3-8\)
\(\Leftrightarrow x^4-10x^2+9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\\x=-3\end{matrix}\right.\)
a) \(\Rightarrow3x\left(x-5\right)-2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{2}{3}\end{matrix}\right.\)
b) \(\Rightarrow x^3+6x^2+12x+8-x^3+6x^2=4\)
\(\Rightarrow12x^2+12x+4=0\)
\(\Rightarrow x\in\varnothing\)(do \(12x^2+12x+4=12\left(x^2+x+\dfrac{1}{4}\right)+1=12\left(x+\dfrac{1}{2}\right)^2+1\ge1>0\))
a ,\(4x^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-x+3\right)\left(2x+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy
b,\(x^2-4+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ...
\(a,\Leftrightarrow4x^2-20x-4x^2+7x-3=23\\ \Leftrightarrow-13x=-26\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^2+4x+4+4x^2-12x+9=5x^2+35x\\ \Leftrightarrow-43x=-13\\ \Leftrightarrow x=\dfrac{13}{43}\)
a) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=23\)
\(\Leftrightarrow4x^2-20x-4x^2+7x-3=23\)
\(\Leftrightarrow13x=-26\Leftrightarrow x=-2\)
b) \(\left(x+2\right)^2+\left(2x-3\right)^2=5x\left(x+7\right)\)
\(\Leftrightarrow x^2+4x+4+4x^2-12x+9=5x^2+35x\)
\(\Leftrightarrow43x=13\Leftrightarrow x=\dfrac{13}{43}\)