K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Rút gọn VT

=> VT = VP 

=> Đpcm

16 tháng 8 2023

a) Ta có:

\(VT=\left(a-b\right)^2\)

\(=a^2-2\cdot a\cdot b+b^2\)

\(=a^2-2ab+b^2\)

\(=a^2-4ab+2ab+b^2\)

\(=\left(a^2+2ab+b^2\right)-4ab\)

\(=\left(a+b\right)^2-4ab=VP\)

⇒ Đpcm

b) Ta có:

\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)

\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)

\(=x^2+2xy+y^2+x^2-2xy+y^2\)

\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

\(=2x^2+0+2y^2\)

\(=2x^2+2y^2\)

\(=2\left(x^2+y^2\right)=VP\)

⇒ Đpcm

a: (a-b)^2

=a^2-2ab+b^2

=a^2+2ab+b^2-4ab

=(a+b)^2-4ab

b: (x+y)^2+(x-y)^2

=x^2+2xy+y^2+x^2-2xy+y^2

=2x^2+2y^2

=2(x^2+y^2)

4 tháng 4 2015

Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:

x^2+y^2>=2.x.y=2xy

x^2+1>=2.x.1=2x

y^2+1>=2.y.1=2y

Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y

(=) 2(x^2+y^2+1)>=2(xy+x+y)

(=)x^2+y^2+1>=xy+x+y.

Ta có : x^2 + y^2 +1 >= xy +x +y

   <=> 2(x^2+y^2 +1) >=2 ( xy+x+y)     (*nhân 2 vào cả 2 vế)

    <=> 2x^2+2y^2+2 >= 2xy+2x+2y

   <=> 2x^2+2y^2+2-2xy-2x-2y >= 0

    <=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0

<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0

+ Với x,y thì  (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên) 

Vậy : x^2 +y^2+1 >= xy+x+y

25 tháng 7 2017

Đặt \(xy-12x+15y\)là (*)

Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)

Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)

Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)

Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)

\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)

\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)

Với \(x=3;y=2\)thay vào (*)  ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)

Với \(x=5;y=3\)thay vào (*)  ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)

Vậy .....

17 tháng 4 2018

2314654564

AH
Akai Haruma
Giáo viên
23 tháng 9 2020

Lời giải:

Ta có:

$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$

$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$

$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$

$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$

$=2(x^2+y^2+xy)^2$

Ta có đpcm.

22 tháng 9 2019

thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải

24 tháng 9 2019

1/ Biến đổi vế trái , ta có :

(x-y)(x+y)= x2+xy - xy-y2= x2-y2

=> (x-y) (x+y) =x2-y2

2/ Biến đổi vế trái , ta có :

(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3

= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3

=> (x-y) (x2+xy+y2) =x3-y3

3/ / Biến đổi vế trái , ta có :

(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3

(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3

5 tháng 12 2021

\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)

7 tháng 7 2016

x4+y4+(x+y)4=x4+y4+x4+4x3y+6x2y2+4xy3+y4

=2x4+2y4+4x2y2+4x3y+4xy3+2x2y2

=2(x4+y4+2x2y2)+4xy(x2+y2)+2x2y2

=2(x2+y2)2+4xy(x2+y2)+2x2y2

=2[(x2+y2)+2xy(x2+y2)+x2y2]

=2(x2+y2+xy)2 (Đpcm)

13 tháng 6 2016

Chứng minh vế trái bằng vế phải:

\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)

\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

13 tháng 6 2016

\(\text{Chứng minh vế trái bằng vế phải: }\)

\(x^4+y^4+\left(x+y\right)^4=2x^4+2y^4+4x^3y+4xy^3+6x^2y^2\)

\(=2\left(x^4+y^4+2x^3y+2xy^3+3x^2y^2\right)\)

\(=2\left(x^4+y^4+x^2y^2+2x^3y+2xy^3+2x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)