K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

10 tháng 11 2019

Đáp án A.

Vì A ’ A = A ’ B = A ’ C ⇒ A ' . A B C  là hình chóp tam giác đều.

Hình vẽ minh họa: Hình chóp tam giác đều ABCD có 3 mặt phẳng đối xứng.

Vậy hình chóp tam giác đều (không phải tứ diện đều) có 3 mặt phẳng đối xứng.

2 tháng 6 2017

Đáp án C

Từ giả thiết suy ra tứ diện A'ABC đều  cạnh a nên  thể tích 

V A ' A B C = a 3 2 12

Khi đó

V A B C . A ' B ' C ' = d A ' , A B C . S A B C = 3 V A ' A B C = a 3 2 4

21 tháng 5 2018

Đáp án B

Gọi M là trung điểm BC

Vì các cạnh AA’ = A’B = A’C

    => Hình chiếu của A’ trên (ABC) là tâm đường tròn ngoại tiếp ∆ABC

    => A’M ⊥ (ABC)

Xét ∆A’BC, ta có A'M = a 3

Xét ∆ABC, ta có: AB = AC = a 2

Vậy 

24 tháng 8 2017

Đáp án B

Gọi M là trung điểm BC

Vì các cạnh AA’ = A’B = A’C

ð Hình chiếu của A’ trên (ABC) là tâm đường tròn ngoại tiếp ∆ABC

ð A’M ⊥  (ABC)

Xét ∆A’BC, ta có: A’M =   a 3

Xét ∆ABC, ta có: AB = AC =   a 2

Vậy

V A B C . A ' B ' C ' = a 3 . S A B C = a 3 . 1 2 . a 2 . a 2 = a 3 3  

17 tháng 6 2017

Đáp án C

Gọi M là trung điểm của BC suy ra 

Lại có 

3 tháng 2 2019

18 tháng 10 2017

Đáp án A

Gọi I là giao điểm của AH và BC

Theo giả thiết H là trực tâm của tam giác đều ABC nên AH là đường cao và H cũng lả trọng tâm của tam giác đều ABC

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Vì hình chóp A’.ABC có A'A = A'B = A'C và đáy ABC là tam giác đều nên hình chóp A’.ABC đều.

Gọi F là hình chiếu của A’ trên (ABC) nên F là tâm của đáy ABC là tam giác đều do đó F cũng là trọng tâm của tam giác ABC.

Gọi AF cắt BC tại D

Tam giác ABC đều cạnh a nên \(AD = \frac{{a\sqrt 3 }}{2}\)

Mà F là trọng tâm nên \(AF = \frac{2}{3}AD = \frac{{a\sqrt 3 }}{3}\)

Xét tam giác A’AF vuông tại F có

\(A'F = \sqrt {A'{A^2} - A{F^2}}  = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{3}} \)

Diện tích tam giác đều ABC là \(S = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối lăng trụ là \(V = A'F.S = \sqrt {{b^2} - \frac{{{a^2}}}{3}} .\frac{{{a^2}\sqrt 3 }}{4}\)