Tính tổng S=9x11+99x101+999x1001+9999x10001+99999x100001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/(7 × 9) + 2/(9 × 11) + 2/(11 × 13) + ... + 2/(97 × 99)
= 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + ... + 1/97 - 1/99
= 1/7 - 1/99
= 92/693
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)
\(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=2.\left(\frac{101}{505}-\frac{5}{505}\right)\)
\(=2.\frac{96}{505}\)
\(=\frac{192}{505}\)
Chúc bạn học tốt !!!