ChoABCcân tại A,trung tuyến AM.Gọi I là trung điểm AC,trên tia đối của tia IM lấy điểm K sao cho IM=IK.a)Chứng minh:Tứ giác AMCKlà hình chữ nhật.b)Gọi E là điểm đối xứng với A qua M.Hỏi tứ giác ABEC là hình gì?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn có thể tự vẽ nha
a) Tứ giác AMCK là hình gì?Vì sao?
M,K đối xứng nhau qua I
=> I là trung điểm của MK (1)
I là trung điểm của AC (gt)(2)
(1)(2)=> AMCK là hình bình hành (3)
Tam giác ABC cân tại A có: AM là trung tuyến (gt)
=> AM vừa là trung tuyến vừa là đường cao (t/c)
=>AM vuông góc với BC
=> Góc BMC=90(4)
(3)(4)=> AMCK là hình chữ nhật(dhnb)
b) C/m ABEC là hình thoi:
AM=ME(gt)(5)
M nằm giữa A và E(6)
(5)(6)=>M là trung điểm AE(7)
M là trung điểm BC(8)
(7)(8)=> ABEC là hình bình hành(9)
AM vuông góc với BC,M thuộc AE=>AE vuông góc với BC(10)
(9)(10)=> ABEC là hình thoi (dhnb)
a: Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
góc AMC=90 độ
Do dó: AMCK là hình chữ nhật
b: Xét tứ giác ABEC có
M là trung điểm chung của AE và BC
AB=AC
Do đó: ABEC là hình thoi
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
a) Tam giác ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AM⊥BC
Tứ giác AMCK có : I là trung điểm của đường chéo MK
I là trung điểm của đường chéo AC
=> AMCK là hình bình hành
mà góc AMC bằng 90 độ
=> AMCK là hình chữ nhật
b) Ta có: AK =MC ( 2 cạnh đối trong hình chữ nhật)
mà MC=MB ( M là trung điểm của BC)
=> AK=MB
Ta có: AK//MC( 2 cạnh đối trong hình chữ nhật)
mà MC và MB là 2 tia đối
=> AK//MB
Tứ giác AKBM có: AK=MB
AK//MB
=> AKBM là hình bình hành
c) Tứ giác ABEC có: M là trung điểm của đường chéo AE
M là trung điểm của đường chéo BC
=> ABEC là hình bình hành
mà AE⊥BC( cmt)
=> ABEC là hình thoi
a: Xét ΔABC có
M,I lần lượt là trung điểm của CB,CA
=>MI là đường trung bình của ΔABC
=>MI//AB và MI=AB/2
MI//AB
\(I\in MK\)
Do đó: MK//AB
\(MI=\dfrac{AB}{2}\)
\(MI=\dfrac{MK}{2}\)
Do đó: AB=MK
Xét tứ giác ABMK có
MK//AB
MK=AB
Do đó: ABMK là hình bình hành
b: Để hình bình hành AKMB là hình thoi thì MB=BA
ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}\)
=>AM=MB=BA
=>ΔMAB đều
=>\(\widehat{ABC}=60^0\)
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật