Tập tất cả các giá trị của tham số m để đường thẳng d : y = x + m 2 cắt đồ thị hàm số ( C ) : y = - x 3 + 4 x tại ba điểm phân biệt là
A. (-1;1)
B. ( - ∞ ; 1 ]
C. R
D. - 2 ; 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng y = x + m cắt đồ thị (C) tại hai điểm thuộc hai nhánh
Phương trình y = 2 x + 1 x - 2 C có 2 nghiệm phân biệt x 1 ; x 2 thỏa mãn: x 1 < 2 < x 2
Vậy, đường thẳng y = x + m cắt đồ thị (C) tại hai điểm thuộc hai nhánh với mọi m ∈ R .
Chọn: D
Đáp án D.
Xét hàm
f x = 4 3 x 3 − 2 x 2 + 1 ,
ta có f ' x = 4 x 2 − 4 x = 4 x x − 1 .
Do đó hàm số f x có các điểm cực trị là
0 ; 1 và 1 ; 1 3 . (d) cắt (C) tại 3 điểm phân biệt thì
1 3 < − m < 1 ⇔ − 1 < m < − 1 3 .
Đáp án B.
Phương trình hoành độ giao điểm: m x + 1 = x - 3 x + 1 ⇔ x ≢ 1 m x + 1 x + 1 = x - 3
⇔ x ≢ - 1 m x 2 + m x + 4 = 0 ( * )
Để đường thẳng y = m x + 1 cắt đồ thị hàm số y = x - 3 x + 1 tạo hai điểm phân biệt thì phương trình (*) phải có hai nghiệm phân biệt khác -1
⇔ m ( - 1 ) 2 + m . ( - 1 ) + 4 ≢ 0 ∆ = m 2 - 16 m > 0 ⇔ m ( m - 16 ) > 0 ⇔ m > 16 m < 0
Chọn C.
Xét hàm số y = x4- 4x2 - 2
Tính y’ = 4x3 – 8x
Bảng biến thiên:
Dựa vào bảng biến thiên suy ra để đồ thị hàm số (C) cắt d tại 4 điểm phân biệt khi và chỉ khi: - 6 < m < -2.
Chọn D.
Phương trình hoành độ giao điểm của đồ thị (C) và đường thẳng d:
Ta khảo sát hàm số (C): y = -x3 + 3x có đồ thị sau như hình bên.
Tìm được nên yêu cầu bài toán