Tìm x, biết:
a) − x − 1 9 = − 2 45
b) − 3 7 − x = 4 5 + − 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)sqrt{x^2-2x+1}=2`
`<=>sqrt{(x-1)^2}=2`
`<=>|x-1|=2`
`**x-1=2<=>x=3`
`**x-1=-1<=>x=-1`.
Vậy `S={3,-1}`
`b)sqrt{x^2-1}=x`
Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)
`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)
`<=>x>=1`
`pt<=>x^2-1=x^2`
`<=>-1=0` vô lý
Vậy pt vô nghiệm
`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`
`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`
`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`
`<=>2sqrt{x-5}=4`
`<=>sqrt{x-5}=2`
`<=>x-5=4`
`<=>x=9(tmđk)`
Vậy `S={9}.`
`d)x-5sqrt{x-2}=-2(x>=2)`
`<=>x-2-5sqrt{x-2}+4=0`
Đặt `a=sqrt{x-2}`
`pt<=>a^2-5a+4=0`
`<=>a_1=1,a_2=4`
`<=>sqrt{x-2}=1,sqrt{x-2}=4`
`<=>x_1=3,x_2=18`,
`e)2x-3sqrt{2x-1}-5=0`
`<=>2x-1-3sqrt{2x-1}-4=0`
Đặt `a=sqrt{2x-1}(a>=0)`
`pt<=>a^2-3a-4=0`
`a-b+c=0`
`<=>a_1=-1(l),a_2=4(tm)`
`<=>sqrt{2x-1}=4`
`<=>2x-1=16`
`<=>x=17/2(tm)`
Vậy `S={17/2}`
d.
ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:
$a^2+2-5a=-2$
$\Leftrightarrow a^2-5a+4=0$
$\Leftrightarrow (a-1)(a-4)=0$
$\Rightarrow a=1$ hoặc $a=4$
$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$
$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)
e. ĐKXĐ: $x\geq \frac{1}{2}$
Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:
$a^2+1-3a-5=0$
$\Leftrightarrow a^2-3a-4=0$
$\Leftrightarrow (a+1)(a-4)=0$
Vì $a\geq 0$ nên $a=4$
$\Leftrightarrow \sqrt{2x-1}=4$
$\Leftrightarrow x=\frac{17}{2}$
1.
a.
11 + x : 5 = 13
x : 5 = 13 - 11
x : 5 = 2
x = 2 . 5
x = 10
a, \(x\) : \(\dfrac{13}{3}\) = -2,5
\(x\) = -2,5 . \(\dfrac{13}{3}\)
\(x\) = \(\dfrac{65}{6}\)
b,\(\dfrac{3}{5}\)\(x\) = \(\dfrac{1}{10}-\)\(\dfrac{1}{4}\)
\(\dfrac{3}{5}x\) = \(\dfrac{-3}{20}\)
\(x\) = \(\dfrac{-3}{20}\) : \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{-1}{4}\)
c, \(\dfrac{25}{9}-\dfrac{12}{13}x=\dfrac{7}{9}\)
\(\dfrac{12}{13}x\)\(=\dfrac{25}{9}-\dfrac{7}{9}\)
\(\dfrac{12}{13}x=2\)
\(x=2:\dfrac{12}{13}\)
\(x=\dfrac{13}{6}\)
a: \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
=>\(13\sqrt{2x}=28\)
=>căn 2x=28/13
=>2x=784/169
=>x=392/169
b: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>2*căn x-5=4
=>căn x-5=2
=>x-5=4
=>x=9
c: =>\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=-1 hoặc x=2
a) \(x+1^3=2^5-\left(-1^3\right)\)
\(\Rightarrow x+1=33\)
=> x = 32
b) \(3^7-x=1^4-\left(-3^5\right)\)
\(\Rightarrow2187-x=1+243=244\)
=> x = 1943
a: \(x\cdot\dfrac{2}{5}+\dfrac{1}{2}\cdot x=9\)
=>\(x\left(\dfrac{2}{5}+\dfrac{1}{2}\right)=9\)
=>\(x\cdot\dfrac{9}{10}=9\)
=>\(x=9:\dfrac{9}{10}=10\)
b: \(\dfrac{1}{9}:x+\dfrac{3}{9}:x=\dfrac{5}{7}\)
=>\(\left(\dfrac{1}{9}+\dfrac{3}{9}\right):x=\dfrac{5}{7}\)
=>\(\dfrac{4}{9}:x=\dfrac{5}{7}\)
=>\(x=\dfrac{4}{9}:\dfrac{5}{7}=\dfrac{4}{9}\cdot\dfrac{7}{5}=\dfrac{28}{45}\)
a ) x = 2 45 − 1 9 = − 1 15 ; b ) x = − 3 7 − 4 5 − − 2 3 = − 59 105