Từ các chữ số 1, 2, 3, 4, 5, 6 lập các số tự nhiên gồm 6 chữ số khác nhau. Hỏi: Có tất cả bao nhiêu số?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = {1, 2, 3, 4, 5, 6 }
a.Tập hợp A gồm 6 phần tử. Để lập được số tự nhiên có 6 chữ số khác nhau thì mỗi số như vậy được coi là một chỉnh hợp chập 6 của 6 phần tử.
\(\text{Vậy các số đó là: }A_6^6=\frac{6!}{\left(6-6\right)!}=6!=720\text{(số)}\)
b. *Cách 1:
Số chẵn là các số có tận cùng 2, 4, 6
- Gọi số chẵn 6 chữ số khác nhau là abcdef
- Với f = 2, 4, 6 nên có 3 cách chọn f ( f ≠ a, b, c, d, e)
Có 5 cách chọn chữ số a;
Có 4 cách chọn chữ số b (b ≠ a)
Có 3 cách chọn chữ số c(c ≠ a, b);
Có 2 cách chọn chữ số d (d ≠ a, b, c);
Có 1 cách chọn chữ số e (e ≠ a, b, c, d);
Vậy theo quy tắc nhân có: 3.1.2.3.4.5 = 3.5! = 360 (số)
*Cách 2:
Với f = 2, 4, 6 có 3 cách chọn f
a, b, c, d, e ≠ f nên có = 5! cách chọn.
Vậy số cách chọn: 5!.3 = 360 (số)
Gọi số lẻ có 6 chữ số a1b1c1d1e1f1
Ta có: f1 = 1, 3, 5 nên có 3 cách chọn a1, b1, c1, d1, e1 ≠ f1 nên có A 55 cách chọn.
Vậy ta có: 3.5! = 360 số
c. Để có một số có 6 chữ số khác nhau lập từ 6 chữ số trên và nhỏ hơn 432.000 ta có thể:
- Chọn chữ số hàng trăm nghìn nhỏ hơn 4: có 3 cách chọn
Với 5 chữ số còn lại có 5! Cách chọn. Số các số như vậy là:
n1 = 3 .5! = 360 số.
- Chọn chữ số đầu là 4, chữ số thứ hai nhỏ hơn 3 và 4 chữ số còn lại.
Số các số như vậy là: n2 = 2.4! = 48 số
- Chọn hai số đầu là 43 và chữ số thứ 3 nhỏ hơn 2:
Số các số như vậy là: n3 = 3! = 6 số
Vậy số các số nhỏ hơn 432.000 là:
n = n1 + n2 + n3= 360 + 48 + 6 = 414 số.
a) ĐS : P6 = 6! = 720 (số).
b) Số tự nhiên chẵn cần lập có dạng , với a, b, c, d, e, f là các phần tử khác nhau của tập {1, 2, 3, 4, 5, 6}, có kể đến thứ tự, f chia hết cho 2.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số f ở hàng đơn vị, với f chia hết cho2. Có 3 cách để thực hiện hành động này.
Hành động 2: Chọn một hoán vị của 5 chữ số còn lại (khác với chữ số f đã chọn) để đặt vào các vị trí a, b, c, d, e (theo thứ tự đó). Có 5! cách để thực hieenjj hành động này.
Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là
3 . 5! = 360 (cách).
Qua trên suy ra trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, co 360 số tự nhiên chẵn.
Tương tự ta tìm được trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, có 360 số tự nhiên lẻ.
c) Trong các số tự nhiên có 6 chữ số khác nhau lập được từ các chữ số đã cho, những số tự nhiên bé hơn 432000 hoặc là những số tự nhiên có chữ số hàng trăm nghìn nhỏ hơn 4 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục nghìn nhỏ hơn 3 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục ngìn là 3 và chữ số hàng nghìn nhỏ hơn 2. Do đó từ các chữ số đã cho, để lập được số tự nhiên có 6 chữ số khác nhau, bé hơn 432000 (ta gọi là số tự nhiên cần lập), phải thực hiện một hành động trong ba hành dộng loại trừ nhau đôi một sau đây:
Hành động 1: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn nhỏ hơn 4.
Có 3 cách để chọn chữ số hàng trăm nghìn và có 5! cách để chọn một hoán vị của 5 chữ số (đã cho) còn lại, rồi đặt vào các vị trí từ hàng chục nghìn đến hàng đơn vị.
Theo quy tắc nhân suy ra: Số các cách để thực hiện hành động này là:
3 . 5! = 360 (cách).
Hành động 2: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4 và chữ số hàng chục nghìn nhỏ hơn 3.
Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:
1 . 2 . 4! = 48 (cách).
Hành động 3: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4, chữ số hàng chục nghìn là chữ số 3, chữ số hàng nghìn nhỏ hơn 2.
Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:
1 . 1 . 1 . 3! = 6 (cách)
Theo quy tắc cộng suy ra số các cách để từ các chữ số khác nhau, lập được từ các chữ số đã cho, có 414 số bé hơn 432000
a) ĐS : P6 = 6! = 720 (số).
b) Số tự nhiên chẵn cần lập có dạng , với a, b, c, d, e, f là các phần tử khác nhau của tập {1, 2, 3, 4, 5, 6}, có kể đến thứ tự, f chia hết cho 2.
Để lập được số tự nhiên này, phải thực hiện liên tiếp hai hành động sau đây:
Hành động 1: Chọn chữ số f ở hàng đơn vị, với f chia hết cho2. Có 3 cách để thực hiện hành động này.
Hành động 2: Chọn một hoán vị của 5 chữ số còn lại (khác với chữ số f đã chọn) để đặt vào các vị trí a, b, c, d, e (theo thứ tự đó). Có 5! cách để thực hieenjj hành động này.
Theo quy tắc nhân suy ra số các cách để lập được số tự nhiên kể trên là
3 . 5! = 360 (cách).
Qua trên suy ra trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, co 360 số tự nhiên chẵn.
Tương tự ta tìm được trong các số tự nhiên có 6 chữ số khác nhau đã lập được từ các chữ số đã cho, có 360 số tự nhiên lẻ.
c) Trong các số tự nhiên có 6 chữ số khác nhau lập được từ các chữ số đã cho, những số tự nhiên bé hơn 432000 hoặc là những số tự nhiên có chữ số hàng trăm nghìn nhỏ hơn 4 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục nghìn nhỏ hơn 3 hoặc là những số tự nhiên có chữ số hàng trăm nghìn là 4 và chữ số hàng chục ngìn là 3 và chữ số hàng nghìn nhỏ hơn 2. Do đó từ các chữ số đã cho, để lập được số tự nhiên có 6 chữ số khác nhau, bé hơn 432000 (ta gọi là số tự nhiên cần lập), phải thực hiện một hành động trong ba hành dộng loại trừ nhau đôi một sau đây:
Hành động 1: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn nhỏ hơn 4.
Có 3 cách để chọn chữ số hàng trăm nghìn và có 5! cách để chọn một hoán vị của 5 chữ số (đã cho) còn lại, rồi đặt vào các vị trí từ hàng chục nghìn đến hàng đơn vị.
Theo quy tắc nhân suy ra: Số các cách để thực hiện hành động này là:
3 . 5! = 360 (cách).
Hành động 2: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4 và chữ số hàng chục nghìn nhỏ hơn 3.
Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:
1 . 2 . 4! = 48 (cách).
Hành động 3: Lập số tự nhiên có 6 chữ số khác nhau, với chữ số hàng trăm nghìn là chữ số 4, chữ số hàng chục nghìn là chữ số 3, chữ số hàng nghìn nhỏ hơn 2.
Tương tự như trên ta tìm được số các cách để thực hiện hành động này là:
1 . 1 . 1 . 3! = 6 (cách)
Theo quy tắc cộng suy ra số các cách để từ các chữ số khác nhau, lập được từ các chữ số đã cho, có 414 số bé hơn 432000.
Đáp án A.
Gọi n = a 1 a 2 a 3 a 4 a 5 a 6 ¯ là số tự nhiên gồm 6 chữ số đôi một khác nhau được lập thành từ các chữ số 1, 2, 3, 4, 5, 6 thỏa mãn n < 432000 .
n < 432000 ⇒ a 1 có thể nhận một trong các giá trị 1, 2, 3, 4.
* a 1 ∈ 1,2,3 ⇒ a 2 , a 3 , a 4 , a 5 , a 6 là một hoán vị của 5 chữ số thuộc tập 1,2,3,4,5,6 \ a 1 . Trường hợp này có 3.5! = 360 số.
* a 1 = 4 ⇒ a 2 có thể nhận một trong các giá trị 1, 2, 3.
+ a 2 ∈ 1,2 ⇒ a 3 , a 4 , a 5 , a 6 là một hoán vị của 4 chữ số thuộc tập 1,2,3,4,5,6 \ a 1 , a 2 . Trường hợp này có 2.4 ! = 48 số.
+ a 2 = 3 ⇒ a 3 chỉ có thể nhận giá trị bằng 1. Khi đó a 4 , a 5 , a 6 là một hoán vị của 3 chữ số thuộc tập 2,5,6 . Trường hợp này có 3 ! = 6 số.
Vậy theo quy tắc cộng có tất cả 360 + 48 + 6 = 414 số.
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
có 720 số tự nhiên có 6 chữ số được lập từ các số trên
Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.
Gọi số cần lập là a b c d e f
+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)
+ Chọn e : Có 5 cách chọn (khác f).
+ Chọn d : Có 4 cách chọn (khác e và f).
+ Chọn c : Có 3 cách chọn (khác d, e và f).
+ Chọn b : Có 2 cách chọn (khác c, d, e và f).
+ Chọn a : Có 1 cách chọn (Chữ số còn lại).
⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1 = 360 (cách chọn).
Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.
Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}
Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.
Có 8 cách chọn chữ số a lấy từ tập S.
Có 7 cách chọn chữ số b lấy từ tập S và khác a.
Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.
Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.
Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.
Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.
Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số abcde mở rộng là:
840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)
Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.
Có 7 cách chọn chữ số b lấy từ tập T.
Có 6 cách chọn chữ số c lấy từ tập T và khác b.
Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.
Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.
Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.
Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)
Từ (1) và (2) suy ra tổng các số abcde cần tìm là:
261330720 – 3732960 = 257597760
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
Việc lập các số tự nhiên có 6 chữ số khác nhau là việc sắp xếp thứ tự 6 chữ số của tập A. Mỗi số là một hoán vị của 6 phần tử đó
⇒ Có P 6 = 6 ! = 6 . 5 . 4 . 3 . 2 . 1 = 720 số thỏa mãn
Vậy có 720 số thỏa mãn đầu bài.