K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Đáp án đúng : D

a: pi/2<a<pi

=>sin a>0

\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)

\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)

b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

c: \(sin\left(a-\dfrac{pi}{3}\right)\)

\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)

d: \(cos\left(a-\dfrac{pi}{6}\right)\)

\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)

24 tháng 7 2017

25 tháng 3 2018

Chọn B.

Ta có: 1 + cos2α = 2cos2α và sin2α = 2sinα.cosα.

Mà tanα = 2 nên cot α = 1/2

Suy ra:

7 tháng 9 2018

Chọn D.

Xét biểu thức (sin⁡ α - cosα ) 2  + (sin⁡ α + cosα ) 2  ta có:

(sin⁡ α - cosα ) 2  + (sin⁡ α + cosα ) 2

=  sin 2 α  - 2sin⁡ α.cosα +  cos 2 α  +  sin 2 α  + 2 sin⁡ α.cosα +  cos 2 α

= 2( sin 2 α  +  cos 2 α ) =2

⇒ (sin⁡ α - cosα ) 2  = 2 - (sin⁡ α + cosα ) 2

Đề kiểm tra 15 phút Đại số 10 Chương 6 có đáp án (Đề 2)

Đề kiểm tra 15 phút Đại số 10 Chương 6 có đáp án (Đề 2)

27 tháng 5 2021

`A=sin(π-α)+cos(π+α)+cos(-α)`

`= sinα-cosα+cosα=sinα=3/5`

16 tháng 12 2019

Chọn A

22 tháng 4 2018

Chọn D.

Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α +  cos2α)  = 2.

Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.

Do  suy ra sinα < cosα  nên sinα - cosα <  0.

Vậy