Cho đoạn thẳng AB, điểm M chuyển động trên đoạn thẳng AB. Vẽ về một phía của nửa mặt phẳng bờ AB các tam giác AMC vuông cân tại C và tam giác BMD vuông cân tại D. Trung điểm I của đoạn CD di chuyển trên đường nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự 2B. Gợi ý: Kéo dài AC và BD cắt nhau tại E. Xét các trường hợp khi M º A Þ C º A, D º E và khi M º B Þ D º B, C º E.
Từ đó chứng minh được I thuộc đường trung bình của DABE.
+ Từ I kẻ đường thẳng //AC cắt AB tại K; Từ I kẻ đường thẳng //BD cắt AB tại H
+ Ta sẽ c/m được tam giác IKH là tam giác đều
+ Ta cũng sẽ c/m được AK=MK; MH=BH
=> MK=AM/2 và MH=BM/2 => KH=MK+MH=(AM+BM)/2=AB/2
=> tam giác IKH là tam giác đều có độ dài các cạnh không thay đổi => đường cao hạ từ I xuống AB cắt AB tại F và IF không thay đổi
=> I chạy trên đường thẳng //AB có độ dài \(IF=\sqrt{IA^2-AF^2}=\sqrt{\left(\frac{AB}{2}\right)^2-\left(\frac{AB}{4}\right)^2}=\sqrt{3}.\frac{AB}{4}\)
Bài 1:
Gọi N là trung điểm của HC
Xét tam giác ABC cân tại A ta có:
AM là đường trung tuyến (gt)
=> AM là đường cao của tam giác ABC
=> AM _|_ BC tại M
Xét tam giác HMC ta có:
O là trung điểm của Mh (gt)
N là trung điểm của HC ( cách vẽ)
=> ON là đường trung bình của tam giác HMC
=> ON // MC
Mà AM _|_ MC tại M (cmt)
Nên NO _|_ AM
Mặt khác MH _|_ AN tại H (gt) và NO cắt MH tại O (gt)
=> O là trực tâm của tam giác AMN
=> AO _|_ MN
Xét tam giác BHC ta có:
M là trung điểm của BC (gt)
N là trung điểm của HC (cách vẽ)
=> MN là đường trung bình của tam giác BHC
=> MN // BH
Mà AO _|_ MN (cmt)
Nên AO _|_ BH (đpcm)
LLớp 8 chúng tôi mới lớp #4 hóm này njpnnvidynnw này là chử viết gìn dayenws
Tương tự bài 4. kéo dài AC và BD cắt nhau tại E. Từ đó chứng minh được I thuộc đường trung bình của DABE.
Bài 4 nào thế bạn