chờ a,b,c thỏa mãn a+b+c=0.cmr ab+bc+ca<hoặc bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+\left(2ab+2bc+2ac\right)=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)
Vì \(a^2+b^2+c^2\ge0\)
Nên \(-\left(2ab+2bc+2ac\right)\ge0\)
\(\Rightarrow\)\(2ab+2bc+2ac\le0\)
\(\Rightarrow\)\(2\left(ab+bc+ac\right)\le0\)
\(\Rightarrow\)\(ab+bc+ac\le0\) ( đpcm )
Công thức lớp 8 chứ ko phải lớp 6 nhé
Chúc bạn học tốt ~
cm bđt ab+bc+ca \(\le\)\(\frac{\left(a+b+c\right)^2}{3}\)(biến đổi tương đương )
\(\Rightarrow\)ab+bc+ca \(\le\frac{0^2}{3}=0\)-đpcm
Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé
em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x
như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)