K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

17 tháng 3 2018

Đáp án B

Ta có: V S . M N P V S . A B C = 2 V S . M N P V S . A B C = S M S A . S N S B . S P S C = 1 3 . S P S C  

Tương tự V S . M P Q V S . A C D = 2 V S . M P Q V S . A B C D = 1 2 . S P S C . S Q S D  

Do đó  2 V S . M N P Q V S . A B C D = 1 3 S P S C + 1 2 . S P S C . S Q S D

Đặt S P S C = x 0 < x ≤ 1 , ta chứng minh được  S A S M + S C S P = S B S N + S D S Q = 2 S O S I

Do đó S D S Q = 1 x + 1 2 ⇒ 2 k = x 1 3 + x x + 2 = 2 3  

Do 0 < x ≤ 1 nên  2 k m ax = f 1 = 2 3 ⇒ k = 1 3 .

2 tháng 9 2018

Chọn đáp án B

14 tháng 7 2017

Chọn B

NV
7 tháng 1

Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)

7 tháng 1

Anh ơi, (a) qua điểm I có đúng không ạ anh, vì đề mờ chỗ đấy anh ạ, chắc chỉ qua điểm I thôi ạ 

NV
7 tháng 1

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1

loading...

7 tháng 12 2018

a) Chứng minh  B 1 ,   C 1 ,   D 1  lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 1 B 1  là đường trung bình của tam giác SAB.

⇒   B 1  là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C 1  là trung điểm của SC.

• D 1  là trung điểm của SD.

b) Chứng minh  B 1 B 2   =   B 2 B ,   C 1 C 2   =   C 2 C ,   D 1 D 2   =   D 2 D .

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 2 B 2  là đường trung bình của hình thang A 1 B 1 B A

⇒   B 2  là trung điểm của B 1 B

⇒   B 1 B 2   =   B 2 B (đpcm)

*Chứng minh tương tự ta cũng được:

• C 2  là trung điểm của C 1 C 2   ⇒   C 1 C 2   =   C 2 C

• D 2  là trung điểm của D 1 D 2   ⇒   D 1 D 2   =   D 2 D .

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D   v à   A 2 B 2 C 2 D 2 . A B C D

2 tháng 8 2023

Để tính thể tích SAPMQ, ta cần tìm độ dài đoạn PM và đoạn MQ. Gọi E là trung điểm của BD. Ta có ME song song với AM và ME = 1/2 BD = 1/2 a. Vì (∆) song song với BD nên góc AME = góc ABD = 45 độ. Vì SA vuông góc với ABCD nên góc SAM = 90 độ. Vì SA = a√3 và góc SAM = 90 độ nên tam giác SAM là tam giác vuông cân tại A. Do đó, góc ASM = 45 độ. Vì góc ASM = góc AME = 45 độ nên tam giác ASM và tam giác AME đồng dạng. Vậy, ta có: AM/AS = AE/AM AM^2 = AS * AE AM^2 = (a√3) * (1/2 a) AM^2 = a^2 * √3 / 2 AM = a√3 / √2 AM = a√6 / 2 Ta có ME = 1/2 a Vậy, PM = AM - ME = (a√6 / 2) - (1/2 a) = (a√6 - a) / 2 Tương tự, ta có MQ = AM + ME = (a√6 / 2) + (1/2 a) = (a√6 + a) / 2 Vậy, thể tích SAPMQ = SABC * PM = a^2 * (a√6 - a) / 2 = a^3√6 / 2 - a^3 / 2