Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA = a 3 và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
A. d = a 15 5
B. d = a
C. d = a 5 5
D. d = a 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A I ⊥ B C , S A ⊥ B C
Suy ra V = a 3 , S ∆ A B C = a 2 3 4 ⇒ S A = 4 a 3
Mà A I = a 3 2
Trong tam giác vuông ∆ S A I ta có 1 A K 2 = 1 A S 2 + 1 A I 2 Vậy d = A K = A S 2 . A I 2 A S 2 + A I 2 = 4 a 195 65
Đáp án C
Đáp án A
Gọi I là trung điểm của BC,H là hình chiếu của A xuống SI.
Ta có: B C ⊥ A H B C ⊥ S A ⇒ B C ⊥ S A I ⇒ A H ⊥ S B C
Ta có: A I = 2 a 2 − a 2 = a 3
1 A H 2 = 1 S A 2 + 1 A I 2 = 1 a 2 + 1 a 3 2 = 4 3 a 2 ⇒ A H = a 3 2
d A ; S B C = A H = a 3 2 .
Gọi M là trung điểm BC, suy ra
Gọi K là hình chiếu của A trên SM suy ra A K ⊥ S M
Từ (1) và (2) suy ra
Trong ∆ SAM, có
Vậy
Chọn A.
Kẻ A H ⊥ B C và A H ⊥ S I . Khi đó A H ⊥ S B C ⇒ d A , S B C = A H
Ta có A I = a 3 2 (do ∆ A B C đều cạnh a)
và
S B A B C = S B A ^ = 60 o ⇒ S A = A B . tan 60 = a 3
Vậy d A S B C = A H = S A . A I S A 2 + A I 2 = a 15 5
Đáp án A
Chọn A
Gọi M là trung điểm BC
Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM. (1)