Cho hàm số f(x) xác định trên R và có đồ thị của hàm số y= f’(x) như hình vẽ bên.
Hàm số y= f( x+ 2018) có mấy điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C.
Ta có: đồ thị hàm số f ' x cắt trục tại 4 điểm phân biệt tức phương trình f ' x = 0 có 4 nghiệm phân biệt. Tuy nhiên, nhìn vào đồ thị ta thấy dấu của f ' x chỉ đổi khi qua nghiệm đầu. Vậy hàm số f ' x có 3 cực trị.
Đáp án D.
Đồ thị hàm số y = f(x) có dạng:
Đồ thị hàm số y = |f(x)| có dạng:
→ Hàm số y = |f(x)| có 3 điểm cực trị.
Chọn A
Ta có: có đồ thị là phép tịnh tiến đồ thị hàm số y= f’(x) theo phương Oy lên trên 4 đơn vị.
Khi đó đồ thị hàm số y= f( x) + 4x cắt trục hoành tại 1 điểm.
ta chọn đáp án A.
Đáp án A.
Phương pháp: Tính g’(x) tìm các nghiệm của phương trình g’(x) = 0
Điểm x0 được gọi là điểm cực tiểu của hàm số y = g(x) khi và chỉ khi g’(x0) = 0 và qua điểm x = x0 thì g’(x) đổi dấu từ âm sang dương.
Cách giải:
Khi x<1 ta có:
Khi x>1 ta có:
Qua x = 1, g’(x) đổi dấu từ dương sang âm => x = 1 là điểm cực đại của đồ thị hàm số y = g(x)
Chứng minh tương tự ta được x = –1 là điểm cực tiểu và x = –3 là điểm cực đại của đồ thị hàm số y = g(x)
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Đáp án B
Phương pháp: Từ đồ thị hàm số y = f’(x) lập BBT của đồ thị hàm số y = f(x) và kết luận.
Cách giải: Ta có
BBT:
Từ BBT ta thấy (I) đúng, (II) sai.
Với => Hàm số y = f(x+1) nghịch biến trên khoảng (0;1).
=>(III) đúng.
Vậy có hai khẳng định đúng
Chọn C
Đồ thị hàm số y= f’( x+ 2018) là phép tịnh tiến của đồ thị hàm số y= f’(x) song song với trục hoành về bên trái 2018 đơn vị.
=> đồ thị hàm số y= f’( x+ 1018) vẫn cắt trục hoành tại 3 điểm.