Trên mặt phẳng tọa độ, hãy tìm tập hợp các điểm biểu diễn số phức z thỏa mãn từng bất đẳng thức:
|z - 1 - i| < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
z – i = x + (y – 1).i
|z – i| ≤ 1
Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn |z – 1| ≤ 1 là các điểm của hình tròn tâm (0; 1) bán kính bằng 1 kể cả biên.
Tập hợp các điểm M(x; y) của mặt phẳng tọa độ biểu diễn số phức z = x + yi thỏa mãn điều kiện:
Các điểm M(x; y) như vậy nằm trong đường tròn có tâm O bán kính bằng 2 không kể các điểm trên đường tròn.
Vậy tập hợp điểm M là hình tròn tâm O(0; 0), bán kính R = 1.
Gọi số phức z = x + y.i có điểm biểu diễn là M(x; y).
|z| = 1 ⇔ x 2 + y 2 = 1 ⇔ x 2 + y 2 =1
Vậy tập hợp điểm M là đường tròn tâm O(0; 0), bán kính R = 1.
Vậy tập hợp điểm M là hình vành khăn tâm O, bán kính đường tròn nhỏ bằng 1,đường tròn lớn bằng 2, không kể các điểm thuộc đường tròn nhỏ.
Vế trái là khoảng cách từ điểm biểu diễn z dến điểm biểu diễn z 0 = 0 + i . Vậy tập hợp các điểm thỏa mãn điều kiện đã cho là tất cả các điểm cách điểm (0; 1) một khoảng không đổi bằng 1. Đó là các điểm nằm trên đường tròn bán kính bằng 1 và tâm là điểm (0; 1) (H. 14)
Ta có thể tiến hành như sau:
Cho z = x + iy, ta có | z - 1 | 2 = | x + y - 1 i | 2 = x 2 + y - 1 2 và như vậy ta có: x 2 + y - 1 2 = 1
Đây là phương trình đường tròn bán kính bằng 1 và tâm là (0; 1)
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z1 được biểu diễn bởi điểm A(1;-1).
Em có: |z - 1 + i| = 2 => MA = 2
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:
Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
z – 1 – i = (x – 1) + (y – 1)i
|z – 1 – i| < 1
⇔ x - 1 2 + y - 1 2 < 1 .
Vậy tập hợp các điểm cần tìm là hình tròn (không kể biên) tâm (1; 1), bán kính bằng 1.