Một lò xo có độ cứng 100 N/m được đặt trên mặt phẳng ngang : một đầu gắn cố định với giá đỡ, đầu còn lại gắn với một quả cầu khối lượng 40 g. Kéo quả cầu rời khỏi vị trí cân bằng của nó một đoạn 3 cm, rồi buông tay ra để nó chuyển động. Bỏ qua lực ma sát, lực cản không khí và khối lượng của lò xo. Xác định vận tốc của quả cầu khi nó về tới vị trí cân bằng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ vật ta xét gồm "Quả cầu - Lò xo - Trái Đất" là hệ cô lập.
Cơ năng W của hệ vật này có giá trị bằng tổng của động năng ( W đ ), thế năng trọng trường ( W t ) và thế năng đàn hồi ( W đ h ) :
W = W đ + W t + W đ h
Chọn gốc toạ độ là vị trí cân bằng của hệ vật (quả cầu đứng yên) và chiều dương là chiều lò xo bị kéo dãn. Do đó ta có :
- Tại vị trí ban đầu : hệ vật có W đ = 0 ( v 0 = 0) lò xo bị dãn một đoạn Δ so với vị trí cân bằng, nên W t ≠ 0, W đ h ≠ 0 và cơ năng của hệ vật bằng :
W 0 = 0 + mg ∆ l + k ∆ l + ∆ l 0 2 /2
- Khi về tới vị trí cân bằng : quả cầu có W đ ≠ 0 (v ≠ 0) và W t = 0 (trùng với gốc tính thế năng đàn hồi), đồng thời lò xo bị dãn một đoạn Δ0, nên cơ năng của hệ vật bằng :
W = m v 2 /2 + 0 + k ∆ l 0 2 /2
Chú ý : Hệ vật này được treo thẳng đứng nên tại vị trí cân bằng của nó, lò xo đã bị dãn một đoạn ∆ 0 thoả mãn điều kiện :
mg + k ∆ 0 = 0 ⇒ mg = -k ∆ 0
với P = mg là trọng lực và F đ h = k ∆ là lực đàn hồi tác dụng lên hệ vật
Áp dụng định luật bảo toàn cơ năng cho hệ vật, ta có :
W = W 0 ⇒ mg ∆ l + k ∆ l + ∆ l 0 2 /2 = m v 2 /2 + k ∆ l 0 2 /2
⇒ mg ∆ l + k ∆ l 2 /2 + k ∆ l ∆ l 0 /2 + k ∆ l 0 2 /2 = m v 2 /2 + k ∆ l 0 2 /2
Vì mg = -k ∆ 0 , nên sau khi rút gọn hai vế của phương trình, ta được
k ∆ l 2 /2 = m v 2 /2
Từ đó suy ra vận tốc của quả cầu khi nó về tới vị trí cân bằng:
Hệ vật ta xét gồm "Quả cầu - Lò xo - Trái Đất" là hệ cô lập (do không chịu ngoại lực tác dụng) nên cơ năng của hệ vật bảo toàn
Chọn vị trí cân bằng của hệ vật làm gốc tính thế năng đàn hồi, chiều lò xo bị kéo dãn là chiều dương
Tại vị trí ban đầu : quả cầu có vận tốc v0 = 0 và lò xo bị kéo dãn một đoạn Δ∆l0 > 0 cm, nên cơ năng của hệ vật:
\(W_0=\dfrac{k\left(\Delta l_0\right)^2}{2}\)
- Tại vị trí cân bằng: quả cầu có vận tốc v ≠ 0 và lò xo không bị biến dạng (Δ = 0), nên cơ năng của hệ vật :
\(W=\dfrac{mv^2}{2}\)
Áp dụng định luật bảo toàn cơ năng, vận tốc của quả cầu khi nó về tới vị trí cân bằng:
\(W=W_0\Rightarrow\dfrac{mv^2}{2}=\dfrac{k\left(\Delta l_0\right)^2}{2}\Rightarrow v=\Delta l_0\sqrt{\dfrac{k}{m}}=3.10^{-2}.\sqrt{\dfrac{100}{40.10^{-3}}}=1,5\)m/s
a/ \(W=\dfrac{1}{2}kx^2+\dfrac{1}{2}mv^2=\dfrac{1}{2}k\Delta l^2\)
\(\Leftrightarrow kx^2+mv^2=k\Delta l^2\Leftrightarrow v=\sqrt{\dfrac{k\Delta l^2-kx^2}{m}}=\sqrt{\dfrac{40.0,02^2-40x^2}{0,4}}\left(m/s\right)\)
b/ \(v_{max}\Leftrightarrow\dfrac{40.0,02^2-40x^2}{0,4}\left(max\right)\Leftrightarrow x=0\) => khi nó ở VTCB
\(\Rightarrow v_{max}=\dfrac{40.0,02^2}{0,4}\left(m/s\right)\)
Chọn D.
Lúc đầu lò xo nén cực đại nên lò xo đẩy hai vật bắt đầu chuyển động từ M. Khi đi từ m đến O (lò xo bị nén), gia tốc hướng về vị trí cân bằng (theo chiều dương) nên lực quán tính tác dụng lên m2 hướng theo chiều âm F q t → = - m 2 a → và vật m2 không thể tách ra được.
Sau khi qua O (lò xo dãn), gia tốc hướng theo chiều âm nên lực quán tinh tác dụng lên m2 theo chiều dương, tức là có xu hướng kéo m2 ra khỏi m1. Mới đầu qua O, lực quán tính này có độ lớn đang bé nhưng sau đó độ lớn quán tính tăng dần. Khi đến P thì
và vật m2 tách ra tại điểm này.
Hệ vật "Lò xo — Vật trượt -Trái Đất" là hệ cô lập (do không chịu ngoại lực tác dụng) nên cơ năng của hệ vật bảo toàn.
Chọn mặt phẳng ngang làm mốc thế năng trọng trường ( W t = 0) và chọn vị trí cân bằng của vật tại điểm O làm mốc thế năng đàn hồi ( W đ h = 0). Vì hệ vật chuyển động trên cùng mặt phẳng ngang, nên cơ năng của hệ vật tại vị trí bất kì có giá trị bằng tổng của thế năng đàn hồi và động năng :
W = W đ h + W đ = k ∆ l 2 /2 + m v 2 /2
Muốn xác định công suất của lực đàn hồi, ta phải tính được lực đàn hồi của lò xo và vận tốc của vật tại cùng một vị trí.
Chọn chiểu lò xo bị nén là chiều dương. Tại vị trí A : lò xo bị nén một đoạn Δl = 10 cm > 0 và vật rời xa vị trí cân bằng có vận tốc v > 0, nên lực đàn hồi của lò xo (chống lại lực nén) ngược hướng với vận tốc của vật và có giá trị bằng :
F đ h = -k ∆ l =-500. 10. 10 - 2 = -50N < 0
Cơ năng của hệ vật tại vị trí A bằng :
W(A) = W(O) ⇒ m v A 2 /2 + k ∆ l 2 /2 = m v 0 2 /2
Hay:
Thay số, ta tìm được vận tốc của vật trượt tại vị trí A :
Từ đó suy ra công suất của lực đàn hồi tại vị trí A có độ lớn bằng :
P = | F đ h v A | = 50.3 = 150 W
Hệ vật "Lò xo — Vật trượt -Trái Đất" là hệ cô lập (do không chịu ngoại lực tác dụng) nên cơ năng của hệ vật bảo toàn.
Chọn mặt phẳng ngang làm mốc thế năng trọng trường ( W t = 0) và chọn vị trí cân bằng của vật tại điểm O làm mốc thế năng đàn hồi ( W đ h = 0). Vì hệ vật chuyển động trên cùng mặt phẳng ngang, nên cơ năng của hệ vật tại vị trí bất kì có giá trị bằng tổng của thế năng đàn hồi và động năng :
W = W đ h + W đ = k ∆ l 2 /2 + m v 2 /2
Khi hệ vật nằm cân bằng tại vị trí O: lò xo không biến dạng ( ∆ l = 0 ) nên thế năng đàn hồi W đ h (O) = 0 và cơ năng của hệ vật có giá trị đúng bằng động năng của vật trượt :
W(O) = W đ (O) = m v 0 2 /2 = 3,6 J
Từ đó suy ra vận tốc của vật tại vị trí O :
Hệ vật "Quả cầu - Lò xo - Trái Đất" là hệ cô lập, do không chịu tác dụng các ngoại lực (lực ma sát, lực cản), chỉ có các nội lực tương tác (trọng lực, phản lực, lực đàn hồi), nên cơ năng của hệ vật bảo toàn.
Chọn vị trí cân bằng của hệ vật làm gốc tính thế năng đàn hồi, chiều lò xo bị kéo dãn là chiều dương.
- Tại vị trí ban đầu : quả cầu có vận tốc v 0 = 0 và lò xo bị kéo dãn một đoạn ∆ l 0 > 0 cm, nên cơ năng của hệ vật:
W 0 = k( ∆ l 0 )2/2
- Tại vị trí cân bằng: quả cầu có vận tốc v ≠ 0 và lò xo không bị biến dạng ( ∆ = 0), nên cơ năng của hệ vật :
W = m v 2 /2
Áp dụng định luật bảo toàn cơ năng cho chuyển động của hệ vật:
W = W 0 ⇒ m v 2 /2 = k( ∆ l 0 )2/2
Suy ra vận tốc của quả cầu khi nó về tới vị trí cân bằng:
v = ∆ l 0 k / m = 3. 10 - 2 100 / 40 . 10 - 3 = 1,5(m/s)