K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

(với a + b, a - b đều không âm)

14 tháng 7 2019

12 - √x - x

= 16 - x - 4 - √x (tách 12 = 16 - 4 và đổi vị trí)

= [42 - (√x)2] - (4 + √x)

= (4 - √x)(4 + √x) - (4 + √x)

= (4 + √x)(4 - √x - 1)

= (4 + √x)(3 - √x)

19 tháng 4 2018

xy - y√x + √x - 1

= (√x)2.y - y√x + √x - 1

= y√x(√x - 1) + √x - 1

= (√x - 1)(y√x + 1) với x ≥ 1

27 tháng 10 2017

= √x(√a + √b) - √y(√a + √b)

= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)

3 tháng 1 2017

a) xy - y√x + √x - 1

= (√x)2.y - y√x + √x - 1

= y√x(√x - 1) + √x - 1

= (√x - 1)(y√x + 1) với x ≥ 1

Để học tốt Toán 9 | Giải bài tập Toán 9

= √x(√a + √b) - √y(√a + √b)

= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)

Để học tốt Toán 9 | Giải bài tập Toán 9

(với a + b, a - b đều không âm)

d) 12 - √x - x

= 16 - x - 4 - √x (tách 12 = 16 - 4 và đổi vị trí)

= [42 - (√x)2] - (4 + √x)

= (4 - √x)(4 + √x) - (4 + √x)

= (4 + √x)(4 - √x - 1)

= (4 + √x)(3 - √x)

25 tháng 9 2018

ab + b√a + √a + 1 = [(√a)2b + b√a] + (√a + 1)

= b√a(√a + 1) + (√a + 1) = (√a + 1)(b√a + 1)

30 tháng 8 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

= (√x - √y)(√x + √y)2

= (√x - √y)(√x + √y)(√x + √y)

= (x - y)(√x + √y)

6 tháng 3 2017

a) ab + b√a + √a + 1 = [(√a)2b + b√a] + (√a + 1)

= b√a(√a + 1) + (√a + 1) = (√a + 1)(b√a + 1)

Để học tốt Toán 9 | Giải bài tập Toán 9

= (√x - √y)(√x + √y)2

= (√x - √y)(√x + √y)(√x + √y)

= (x - y)(√x + √y)

29 tháng 4 2021

a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)

\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)

28 tháng 5 2021

a) (a+1)(ba+1).
b) (x−y)(x+y)

11 tháng 9 2018

với a,b,x,y không âm ta có

a,\(ab+b\sqrt{a}+\sqrt{a}+1\)

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)