Số tiếp tuyến của đồ thị hàm số y = x 3 x - 2 - 27 song song với trục hoành là
A. 0
B. 1
C. 2
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$
$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$
Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$
Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.
Đáp án C.
Để thỏa mãn tính chất tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y ' ' x = 0 là một đường thẳng song song với trục hoành thì hàm số phải thỏa mãn điều kiện:
Nghiệm của phương trình y ' ' x = 0 là nghiệm của phương trình y ' x = 0 .
Với A: y ' = 3 x 2 − 6 x + 1 ; y ' ' = 6 x − 6 .
y ' ' = 0 ⇔ x = 1 không là nghiệm của phương trình . y ' = 0 Vậy A không thỏa mãn.
Với B: y ' = 3 x 2 − 6 x − 1 ; y ' ' = 6 x − 6 . Tương tự B không thỏa mãn.
Với C: y ' = 3 x 2 − 6 x + 3 ; y ' ' = 6 x − 6 .
y ' ' = 0 ⇔ x = 1 là nghiệm của phương trình y ' = 0 thỏa mãn, vậy ta chọn C.
a: Để (d)//Ox thì m-1=0
=>m=1
b: Thay x=-1 và y=1 vào (d), ta được:
-m+1+m=1
=>1=1(luôn đúng)
c: Thay x=\(\dfrac{2-\sqrt{3}}{2}\) và y=0 vào (d), ta đc:
\(\left(m-1\right)\cdot\dfrac{2-\sqrt{3}}{2}+m=0\)
=>\(\left(m-1\right)\cdot\left(2-\sqrt{3}\right)+2m=0\)
=>\(2m-\sqrt{3}m-2+\sqrt{3}+2m=0\)
=>\(m\left(4-\sqrt{3}\right)=2-\sqrt{3}\)
=>\(m=\dfrac{2-\sqrt{3}}{4-\sqrt{3}}\)
Bài 2:
c: Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=4 và y=2 vào (d'), ta được:
b-4=2
hay b=6
Ủa hỏi mỗi hoành độ thôi hở :D?
\(f'\left(x\right)=2x-4\)
Vi \(pttt//d:y=8x+2017\Rightarrow f'\left(x\right)=8\)
\(\Rightarrow2x-4=8\Leftrightarrow x=6\)
Chọn đáp án B
FOR REVIEW |
Sai lầm thường gặp trong bài toán là vội vàng kết luận số tiếp tuyến thỏa mãn yêu cầu bài toán bằng số tiếp điểm khi chưa viết phương trình tiếp tuyến. |
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
a) Đồ thị:
b) Gọi giao điểm của đồ thị của hàm số y = x - 1 với trục tung, với trục hoành lần lượt là 2 điểm B và C
Thay x = 0 vào hàm số y = x - 1 ta có:
y = 0 - 1 = - 1
⇒ B(0; -1)
Thay y = 0 vào hàm số y = x - 1 ta có:
x - 1 = 0
⇔ x = 1
⇒ C(1; 0)
c) Gọi (t): y = ax + b (a 0)
Do (t) // (d) nên a = -2
⇒ (t): y = -2x + b
Thay y = -3 vào (d') ta có:
x - 1 = -3
⇔ x = -3 + 1
⇔ x = -2
Thay x = -2; y = -3 vào (t) ta có:
-2.(-2) + b = -3
⇔ 4 + b = -3
⇔ b = -3 - 4
⇔ b = -7
Vậy (t): y = -2x - 7
Đáp án B.
Ta có y ' = 3 x 2 x - 2 - x 3 x - 2 2 = 2 x 2 x - 3 x - 2 2 .
Do tiếp tuyến song song với trục hoành ⇒ y ' = 0 ⇔ [ x = 0 ⇒ y = - 27 x = 3 ⇒ y = 0
Với x = 3,y = 27 ⇒ PTTT là: y = 0 ≡ O x (loại)
Với x = 0, y = -27 ⇒ PTTT là: y = -27.
Vậy có 1 tiếp tuyến thỏa mãn.