Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng 30 0 . Tính thể tích V của khối chóp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có
A D ⊥ A B A D ⊥ S A ⇔ A D ⊥ S A B .
Vậy S D , S A B = S D , S A = A S D ^ = 60 0 .
Trong tam giác vuông SAD ta có
Vậy thể tích khối chóp S.ABCD bằng S A = A D . cot A S D ^ = 2 a 3 . V S A B C D = 1 3 S A B C D . S A = 1 3 4 a 2 . 2 a 3 = 8 3 a 3 9 .
Đáp án D
Ta có
Vậy SB là hình chiếu vuông góc của SC lên mặt phẳng (SAB)
Ta có: SA ⊥ (ABCD) SA ⊥ AB
Mặt phẳng (SAB) tạo với đáy một góc 60° nên
Đáp án B
Ta có V S . A B C D = 1 3 S A B C D . S A
Dễ có S A B C D = A B . A C = a . a 3 = 3 a 2 ,
và S A = A C . tan A C S ^ = A C . tan 30 o = a 2 + 3 a 2 . 3 3 = 2 3 3 a .
Từ đây ta suy ra V S . A B C D = 1 3 S A B C D . S A = 1 3 . a 2 3 . 2 3 3 a = 2 3 a 3 .
⇒ Chọn đáp án B.