K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Đáp án B

11 tháng 7 2019

Gọi x,y > 0 lần lượt là chiều dài cạnh đáy và chiều cao của hình hộp

Tổng diện tích xung quanh và diện tích của một mặt đáy của thùng đựng hành là  S = x 2 + 4 x y

Thể tích của thùng đựng hàng là 

V = x 2 y = 108 ⇒ y = 108 x 2

Suy ra  S = x 2 + 4 x . 108 x 2 = x 2 + 432 x

Tìm giá trị nhỏ nhất của S trên khoảng  0 ; + ∞

Ta có 

S ' = 2 x - 432 x 2 ; S ' = 0 ⇔ x = 6 S ' ' = 2 + 864 x 3 > 0 , ∀ x ∈ 0 ; + ∞

Suy ra S = S(6) = 108. Vậy diện tích nhỏ nhất cần tìm là 108 m 2

Đáp án B

19 tháng 1 2018

Chọn D.

Với a = 5 suy ra Stpmin h = 2,5

25 tháng 11 2019

Đáp án là A

Gọi cạnh đáy, cạnh bên của hình hộp đứng lần lượt là x và y ( x ,y > 0)

Ta có:

Khi đó:

Vậy S đạt giá trị nhỏ nhất bằng 30 40 3  khi 

24 tháng 7 2019

Đáp án là A 

                                                           

Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi bằng 8 m 3 , thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường, giá tôn làm đáy thùng là 100.000 / m 2  và giá tôn làm thành xung quanh thùng là 50.000 / m 2 . Hỏi người bán gạo đó cần đóng thùng đựng gạo với cạnh đáy bằng bao nhiêu...
Đọc tiếp

Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi bằng 8 m 3 , thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường, giá tôn làm đáy thùng là 100.000 / m 2  và giá tôn làm thành xung quanh thùng là 50.000 / m 2 . Hỏi người bán gạo đó cần đóng thùng đựng gạo với cạnh đáy bằng bao nhiêu để chi phí mua nguyên liệu là nhỏ nhất ?

<!-- MathType@Translator@5@5@MathML3 (namespace attr).tdl@MathML 3.0 (namespace attr)@ -->


<math display='block' xmlns='http://www.w3.org/1998/Math/MathML'>


 <semantics>


  <mrow>


   <mn>50.000</mn><mo>/</mo><msup>


    <mi>m</mi>


    <mn>2</mn>


   </msup>


   </mrow>


  <annotation encoding='MathType-MTEF'>MathType@MTEF@5@5@+=


  feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn


  hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr


  4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9


  vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x


  fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynaiaaic


  dacaGGUaGaaGimaiaaicdacaaIWaGaai4laiaad2gadaahaaWcbeqa


  aiaaikdaaaaaaa@3CDA@


  </annotation>


 </semantics>


</math>


<!-- MathType@End@5@5@ -->


 

B. 1,5m

C. 2m

A. 1m

1
11 tháng 8 2017

Đáp án C

Phương pháp: Lập hàm số chi phí theo một ẩn sau đó tìm giá trị nhỏ nhất của hàm số đó.

Cách giải: Gọi a là chiều dài cạnh đáy hình vuông của hình hộp chữ nhật và b là chiều cao của hình hộp chữ nhật ta có  a 2 b = 8 a , b > 0 ⇒ a b = 8 a

Diện tích đáy hình hộp là a 2 và diện tích xung quanh là 4ab nên chi phí để làm thùng tôn là  100 a 2 + 50.4 a b = 100 a 2 + 200 a b = 100 a 2 = 100. 8 a = 100 a 2 + 1600 a = 100 a 2 + 16 a

Áp dụng BĐT Cauchy ta có  a 2 + 16 a = a 2 + 8 a + 8 a ≥ 3 a 2 + 8 a + 8 a 3 = 3.4 = 12

Dấu bằng xảy ra khi và chỉ khi  a 2 + 8 a ⇔ a = 2.

Vậy chi phí nhỏ nhất bằng 1200000 đồng khi và chỉ khi cạnh đáy hình hộp bằng 2m.

18 tháng 12 2023

a, Thể tích thùng: 3 x 2 x 1,5 = 9 (m3)

Diện tích xung quanh thùng: 2 x 1,5 x (3 + 2) = 15 (m2)

b, Số tiền phải trả khi sơn xung quanh thùng:

15 x 120 000 = 1 800 000 (đồng)

Đ.số:......

8 tháng 6 2018

Đáp án B

Ta có 

Ta tìm điều kiện của a đê diện tích toàn phần nhỏ nhất. xét hàm số ta được a=2

11 tháng 11 2018