cho pt : \(ax^2+bx+c=0\)
CMR điều kiện cần và đủ để pt có 2 nghiệm mà nghiệm này gấp đôi nghiệm kia là: 9ac=2b2
các bạn giúp mk bài này vs nha, cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=b^2-4ac\ge0\Leftrightarrow b^2\ge4ac\)
vì 2 nghiệm cùng dấu nên ac>0
\(\int^{x_1+x_2=-\frac{b}{a}}_{x_1x_2=\frac{c}{a}}\)
\(x_1=2x_2\)thế vào pt thứ 1 suy ra
\(x_2=-\frac{b}{3a};x_1=\frac{-2b}{3a}\)
\(\Rightarrow\frac{-b}{3a}\frac{-2b}{3a}=\frac{c}{a}\Rightarrow2b^2=9ac\left(TM\right)\)
mình làm tắt tắt thôi chứ bạn tự trình bày ra nhé ^_^
(+) điều kiện đủ : giả sử ta có : \(kb^2=\left(k+1\right)^2ac\) (1)
g/s PT \(ax^2+bx+c=0\) luôn có hai nghiệm x1 ; x2 ;
Theo hệ thức Viete ta có : \(\int^{x1x2=\frac{c}{a}}_{x1+x2=-\frac{b}{a}}\)
Từ (1) => \(\frac{kb^2}{a^2}=\frac{\left(k+1\right)^2c}{a}\Leftrightarrow k\left(-\frac{b}{a}\right)^2-\frac{\left(k+1\right)^2c}{a}=0\)
<=> \(k\left(x1+x2\right)-\left(k+1\right)^2x1x2\) = 0
<=> \(k\left(x1+x2\right)-\left(k^2+2k+1\right)x1x2=0\)
<=> \(kx1^2+2kx1x2+kx2^2-k^2x1x2-2kx1x2-x1x2=0\)
<=> \(kx1^2+kx2^2-k^2x1x2-x1x2\)
<=> \(kx1\left(x1-kx2\right)+x2\left(kx2-x1\right)=0\)
<=> \(\left(x1-kx2\right)\left(kx1-x2\right)=0\)
<=> x1 = kx2 hoặc x2 = kx1
(*) với k = 0 pt <=> \(x-2=0\Leftrightarrow x=2\) ( TM )
(*) với k khác 0 . pt là pt bậc 2
\(\Delta=\left(1-2k\right)^2-4k\left(k-2\right)=4k^2-4k+1-4k^2+8k=4k+1\)
Để pt có nghiệm hữu tỉ khi 4k + 1 là số chính phương
=> \(4k+1=a^2\) (1) Vì 4k + 1 là số lẻ => a^2 là số lẻ => a là số lẻ => a = 2n + 1 ( n thuộc Z ) thay vào (1) ta có
\(4k+1=\left(2n+1\right)^2=4n^2+4n+1\Leftrightarrow4k=4n\left(n+1\right)\Leftrightarrow k=n\left(n+1\right)\)
Vậy với k = n(n+1) thì pt luôn có nghiệm hữu tỉ ( n thuộc Z )
khó wa !!!!!!!!!!!!!!!!!!!!!!!!!!
mình ko giải được!!!!!!!!!!!!!!!!!!!!!!!
bạn tich cho minh nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
b2 -4ac>0 ( a khác 0 )
x1 + x2 = -b/a
x1.x2 = c/a
x1 - 2x2 =0
=> x2 = -b/3a ; x1 =-2b/3a
mà x1x2 =c/a
=> 2b2 /9a2 = c/a => 2b2 = 9ac