K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Đáp án B

Lấy ngẫu nhiên 1 quả cầu trong 9 quả cầu có

Gọi A là biến cố “ lấy được quả cầu được đánh số là chẳn”

Trong 9 quả cầu đánh số, có các số chẵn là 2; 4; 6; 8

suy ra n(A) = 4

Vậy  P ( A ) = 4 9

31 tháng 8 2018

Đáp án B

Lấy ngẫu nhiên 1 quả cầu trong 9 quả cầu có C 9 1 cách ⇒ n Ω = 9

Gọi A là biến cố “ lấy được quả cầu được đánh số là chẳn”

Trong 9 quả cầu đánh số, có các số chẵn là 2 ; 4 ; 6 ; 8  suy ra n A = 4. Vậy  P A = 4 9

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

-         Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega  \right) = C_9^2 = 36\)

-         Số cách lấy 2 quả khác màu là:

+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)

+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)

+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)

=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách

-         Số cách lấy 2 quả khác màu trùng số:

+ 2 quả cùng là số 1: \(C_3^2 = 3\)

+ 2 quả cùng là số 2: \(C_3^2 = 3\)

+ 2 quả cùng là số 3: \(C_2^2 = 1\)

=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách

=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)

=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Xác suất lấy ra quả cầu không có số 1 hoặc số 5 từ túi đầu tiên: \(\frac{8}{{10}} = \frac{4}{5}\)

Xác suất lấy được quả cầu không có số 1 hoặc số 5 từ túi thứ hai là: \(\frac{8}{{10}} = \frac{4}{5}\)

Vì lấy ngẫu nhiên từ hai túi khác nhau một quả cầu nên hai biến cố quả cầu lấy ra mỗi túi không có số 1 hoặc số 5 là độc lập.

Vậy xác suất để trong hai quả cầu được lấy ra không có quả cầu nào ghi số 1 hoặc ghi số 5 là: \(\frac{4}{5}.\frac{4}{5} = \frac{{16}}{{25}}\)

2 tháng 8 2018

Chọn D

18 tháng 5 2017

Kí hiệu A là biến cố : "Quả lấy ra mầu đỏ"

B là biến cố : "Quả lấy ra ghi số chẵn"

a) Không gian mẫu \(\Omega=\left\{1,2,...,10\right\}\)

\(A=\left\{1,2,3,4,5,6\right\}\)

Từ đó : \(P\left(A\right)=\dfrac{6}{10}=\dfrac{3}{5}\)

Tiếp theo, \(B=\left\{2;4;6;8;10\right\}\)\(A\cap B=\left\{2;4;6\right\}\)

Do đó : \(P\left(B\right)=\dfrac{5}{10}=\dfrac{1}{2};P\left(AB\right)=\dfrac{3}{10}\)

Ta thấy \(P\left(AB\right)=\dfrac{3}{10}=\dfrac{3}{5}.\dfrac{1}{2}=P\left(A\right)P\left(B\right)\)

Vậy A và B độc lập.

14 tháng 9 2019

Kí hiệu A là biến cố: "Quả lấy ra màu đỏ";

B là biến cố: "Quả lấy ra ghi số chẵn".

Không gian mẫu

Ω = {1, 2, ..., 10};

A = {1, 2, 3, 4, 5, 6}.

Từ đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tiếp theo: B = {2, 4, 6, 8, 10} và A ∩ B = {2, 4, 6}.

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta thấy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy A và B độc lập.

17 tháng 12 2017

Rõ ràng trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả màu đỏ, 5 quả màu đỏ ghi số chẵn, 25 quả màu xanh hoặc ghi số lẻ. Vậy theo định nghĩa

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong đó A, B, C, D là các biến cố tương ứng với các câu a), b), c) ,d).

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Hai biến cố A và B đồng khả năng vì đều có 15 khả năng lấy được quả cầu màu đỏ và 15 khả năng lấy được quả cầu màu xanh.

b) Vì có 2 biến cố đồng khả năng và luôn xảy ra 1 trong 2 biến cố A và B nên xác suất của mỗi biến cố đó là \(\dfrac{1}{2}\)

18 tháng 5 2017

Trong hộp có 30 quả với 15 quả ghi số chẵn, 10 quả mầu đỏ, 5 quả mầu đỏ ghi số chẵn, 25 quả mầu xanh hoặc ghi số lẻ. Vậy theo định nghĩa :

a) \(P\left(A\right)=\dfrac{15}{30}=\dfrac{1}{2}\)

b) \(P\left(B\right)=\dfrac{10}{30}=\dfrac{1}{3}\)

c) \(P\left(C\right)=\dfrac{5}{30}=\dfrac{1}{6}\)

d) \(P\left(D\right)=\dfrac{25}{30}=\dfrac{5}{6}\)