K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

đề sai r bạn ơi 

a: E đối xứng M qua AB

nên AB là trung trực của ME

=>AB vuông góc với ME tại trung điểm của ME

=>AB là phân giác của góc EAM(1)

E đối xứng N qua AC

nên AC là trung trực của NE

=>AC vuông góc với NE tại trung điểm của NE

=>AC là phân giác của góc EAN(2)

Xét tứ giác AIEK có

góc AIE=góc AKE=góc KAI=90 độ

nên AIEK làhình chữ nhật

b: Từ (1), (2) suy ra góc NAM=2*90=180 độ

=>N,A,M thẳng hàng

mà AM=AN

nên A là trung điểm của MN

2 tháng 8 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình chữ nhật AEDF trở thành hình vuông khi AE = AF

Ta có: AE = 1/2 AB; AF = 1/2 AC

Nên AE = AF ⇒ AB = AC

Vậy nếu ∆ ABC vuông cân tại A thì tứ giác AEDF là hình vuông.

29 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Tứ giác AEDF là hình chữ nhật

⇒ DE // AC; DF // AB

Trong ∆ ABC, ta có: DB = DC (gt)

Mà DE // AC

Suy ra: AE = EB (tính chất đường trung bình của tam giác)

Lại có: DF // AB và DB = DC

Suy ra: AF = FC (tính chất đường trung bình của tam giác)

Xét tứ giác ADBM, ta có: AE = EB (chứng minh trên)

ED = EM (vì AB là trung trực DM)

Suy ra tứ giác ADBM là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

Mặt khác: AB ⊥ DM

Vậy hình bình hành ADBM là hình thoi (vì có hai đường chéo vuông góc)

Xét tứ giác ADCN, ta có: AF = FC (chứng minh trên)

DF = FN (vì AC là đường trung trực DN)

Suy ra tứ giác ADCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường).

Lại có: AC ⊥ DN

Vậy hình bình hành ADCN là hình thoi (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

29 tháng 11 2023

a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.

 

Áp dụng định lý Pythagoras, ta có:

AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100

BC^2 = 10^2 = 100

 

Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.

 

b) Ta có:

- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.

- D là điểm đối xứng với H qua AB, nên AD = AH.

- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.

- E là điểm đối xứng với H qua AC, nên AE = AH.

- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.

 

Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.

 

Vậy ta có thể kết luận rằng AH = MN.

 

c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.

 

Ta đã chứng minh trong phần b) rằng AD = AE.

 

Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.

 

Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.

 

Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.

 

Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).

 

Vậy ta có thể kết luận rằng AF vuông góc với MN.

27 tháng 8 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điểm M và điểm D đối xứng qua trục AB

Suy ra AB là đường trung trực của đoạn thẳng MD

⇒ AB ⊥ DM ⇒ ∠ (AED) = 90 0

Điểm D và điểm N đối xứng qua trục AC ⇒ AC là đường trung trực của đoạn thẳng DN ⇒ AC ⊥ DN ⇒  ∠ (AFD) =  90 0

Mà  ∠ (EAF) =  90 0 (gt). Vậy tứ giác AEDF là hình chữ nhật (vì có 3 góc vuông).

10 tháng 4 2023

Giúp mình vs ạ!

loading...  loading...  

1: H đối xứng D qua AB

=>AH=AD

H đối xứng E qua AC

=>AH=AE

=>AH=AD=AE

3: Xét ΔAIH và ΔADI có

AH=AD

góc HAI=góc DAI

AIchung

=>ΔAIH=ΔAID

=>góc AHI=góc ADI=góc ADE

Xét ΔAHK và ΔAEK có

AH=AE

góc HAK=góc EAK

AK chung

=>ΔAHK=ΔAEK

=>góc AEK=góc AHK=góc AED

=>góc AHK=góc AHI

=>HA là phân giác của góc IHK