Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=3, AD=4 và các cạnh bên của hình chóp tạo với mặt đáy một góc 60 0 . Tính thể tích của khối cầu ngoại tiếp hình chóp đã cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi H là hình chiếu của S lên (ABCD)
Ta có cạnh bên của hình chóp tạo với mặt đáy một góc 600
Do đó
S A H ^ = S B H ^ = S C H ^ = 60 0 =>HA = HB = HC = HD
Suy ra
Khi đó
Đáp án A
Ta có:
S A ⊥ A B C D B C ⊥ A B ⇒ B C ⊥ S A B ⇒ S B C ; A B C D ^ = S B A ^ R A B C D = A C 2 a .
Tam giác SAB vuông tại A, có
tan S B A ^ = S A A B ⇒ S A = tan 60 ∘ . a 3 = 3 a .
Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là
Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là:
R = R A B C D 2 + S A 2 4 = a 2 + 3 a 2 4 = a 13 2 ⇒ V = 4 3 π R 3 = 13 13 π a 3 6
Đáp án A
Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là R A B C D = A C 2 = a
Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là
Đáp án B
A C = 2 S A = 2 tan 60 0 = 2 3 V = 1 3 .2 3 .1. 3 = 2