K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

30 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

7 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

13 tháng 5 2017

ax2+bx+c=a(x2+\(\dfrac{b}{a}\)x+\(\dfrac{c}{a}\))
=a(x2-(x1+x2)x+x1x2)
=a(x-x1)(x-x2)

Áp dụng:
Câu a: Ptr có 2 nghiệm là 5,6=>x2-11x+30=(x-5)(x-6)
Câu b: Ptr có 2 nghiệm là \(\dfrac{-2}{3}\),-4=>3x2+14x+8=3(x+\(\dfrac{2}{3}\))(x+4)
Câu c: Ptr có 2 nghiệm là \(\dfrac{2}{5}\),-2=>5x2+8x-4=5(x-\(\dfrac{2}{5}\))(x+2)
Câu d: Ptr có 2 nghiệm là 3+\(\sqrt{3}\),-2+\(\sqrt{3}\)=>
x2-(1+2\(\sqrt{3}\))x-3+\(\sqrt{3}\)=(x-3-\(\sqrt{3}\))(x+2-\(\sqrt{3}\))

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

29 tháng 11 2018

3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

30 tháng 8 2017

* Chứng minh:

Phương trình a x 2   +   b x   +   c   =   0 có hai nghiệm  x 1 ;   x 2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

=   a . x 2   +   b x   +   c   ( đ p c m ) .

* Áp dụng:

a)  2 x 2   –   5 x   +   3   =   0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)  3 x 2   +   8 x   +   2   =   0

Có a = 3; b' = 4; c = 2

⇒  Δ ’   =   4 2   –   2 . 3   =   10   >   0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

4 tháng 6 2017

* Chứng minh:

Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2

⇒ Theo định lý Vi-et: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó : a.(x – x1).(x – x2)

= a.(x2 – x1.x – x2.x + x1.x2)

= a.x2 – a.x.(x1 + x2) + a.x1.x2

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

= a.x2 + bx + c (đpcm).

* Áp dụng:

a) 2x2 – 5x + 3 = 0

Có a = 2; b = -5; c = 3

⇒ a + b + c = 2 – 5 + 3 = 0

⇒ Phương trình có hai nghiệm Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9

4 tháng 4 2017

a) Phương trình 2x2 – 5x + 3 = 0 có a + b + c = 2 – 5 + 3 = 0 nên có hai nghiệm là x1 = 1, x2 = \(\dfrac{3}{2}\) nên:

2x2 – 5x + 3 = 2(x – 1)(x2 - \(\dfrac{3}{2}\)) = (x – 1)(2x – 3)

b) Phương trình 3x2 + 8x + 2 có a = 3, b = 8, b’ = 4, c = 2.

Nên ∆’ = 42 – 3 . 2 = 10, có hai nghiệm là:

x1 = \(\dfrac{-4-\sqrt{10}}{3}\), x2 = \(\dfrac{-4+\sqrt{10}}{3}\)

nên: 3x2 + 8x + 2 = 3(x - \(\dfrac{-4-\sqrt{10}}{3}\))(x - \(\dfrac{-4+\sqrt{10}}{3}\))

= 3(x + \(\dfrac{4+\sqrt{10}}{3}\))(x + \(\dfrac{4-\sqrt{10}}{3}\))

4 tháng 4 2017
a,) Phương trình 2x2 – 5x + 3 = 0 có a + b + c = 2 – 5 + 3 = 0 nên có hai nghiệm là x1 = 1, x2=\(\dfrac{3}{2}\) nên: 2x2 – 5x + 3 = 2(x – 1)(x2 -\(\dfrac{3}{2}\) ) = (x – 1)(2x – 3) b) Phương trình 3x2 + 8x + 2 có a = 3, b = 8, b’ = 4, c = 2. Nên ∆’ = 42 – 3 . 2 = 10, có hai nghiệm là: x1 =\(\dfrac{-4-\sqrt{10}}{3}\) , x2 =\(\dfrac{-4+\sqrt{10}}{3}\) nên: 3x2 + 8x + 2 = 3(x - \(\dfrac{4+\sqrt{10}}{3}\) )(x -\(\dfrac{4-\sqrt{10}}{3}\) ) = 3(x + )(x + )
7 tháng 5 2021

$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$

7 tháng 5 2021

`x=-1=>ax^2+bx+c=a-b+c=0`