Xét số thực a,b thỏa mãn b>1 và a ≤ b < a . Biểu thức P = log a b a + 2 log b a b đạt giá trị nhỏ nhất khi
A. a = b 2 .
B. a 2 = b 3 .
C. a 3 = b 2 .
D. a 2 = b .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)
Ta có:
\(\left(b-\dfrac{1}{2}\right)^2\ge0\) <=> \(b^2-b+\dfrac{1}{4}\ge0\) <=>\(b-\dfrac{1}{4}\le b^2\)
Mà :
a<1 => \(log_a\left(b-\dfrac{1}{4}\right)\ge log_ab^2=2log_ab\)
P=\(log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}log_{\dfrac{a}{b}}b=log_a\left(b-\dfrac{1}{4}\right)-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\ge2log_ab-\dfrac{1}{2}.\dfrac{log_ab}{1-log_ab}\)
Đặt t=logab
Do b<a<1 => t=logab >1
Khi đó \(P\ge2t+\dfrac{t}{2t-2}=f\left(t\right)\). Khảo sát f(t) trên (1;+\(\infty\)) ta đc
P\(\ge\)f(t) \(\ge\) f\(\left(\dfrac{3}{2}\right)\) = \(\dfrac{9}{2}\)
Đáp án A
Ta có log a b b = log a b a . b a = log a b a − 1 .
Do đó
P = 2 2 log a b a − log a b a − 1 2 + 27 log a b a = 2 log a b a + 1 2 + 27 log a b a .
Đặt t = log a b a . Do 1 < a ≤ b 2 ⇒ a ≤ b .
Suy ra
1 t = 1 log a b a = log a a b = 1 − log a b ≤ 1 − log a a = 1 − 1 2 = 1 2 ⇒ t ≥ 2
Khi đó P = 2 t + 1 2 + 27 t = f t .
Khảo sát f t trên 2 ; + ∞ , ta được f t đạt giá trị nhỏ nhất bằng 63 2 khi t=2.
Với t = 2 ⇒ log a b a = 2 ⇔ a = b 2 .