K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

14 tháng 2 2019

Chọn A.

Xếp 12 học sinh thành 1 dãy có: 12! Cách sắp xếp.

Chọn 2 bạn nữ và sắp xếp 2 bạn đứng đầu hàng và cuối hàng có:  2 . C 7 2 cách.

Sắp xếp 10 bạn còn lại có: 10! Cách.

Do đó có:  2 C 7 2 . 10 ! cách sắp xếp 12 học sinh  sao cho người đứng đầu hàng và cuối hàng đều là nữ.

Xác suất cần tìm là:  P = 2 . C 7 2 . 10 ! 12 ! = 7 22

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Lời giải:

Xếp $12$ học sinh gồm $7$ nam, $5$ nữ theo hàng dọc ta có \(12!\) cách xếp

Trươc tiên, chọn 1 bạn là nam đứng đầu hàng ta có $7$ cách chọn

Chọn 1 bạn nam đứng cuối hàng ta có $6$ cách chọn

$10$ bạn còn lại xếp ở bên trong ta có \(10!\) cách xếp

Do đó số kết cục thuận lợi: \(7.6.10!\)

Vậy xác suất để người đứng hàng đầu và cuối đều là nam là:

\(P(A)=\frac{7.6.10!}{12!}=\frac{7}{22}\)

Đáp án C

11 tháng 8 2018

Đáp án A

Kí hiệu học sinh các lớp 12A, 12B, 12C lần lượt là A, B, C

Ta sẽ xếp 5 học sinh của lớp 12C trước, khi đó xét các trường hợp sau:

TH1: CxCxCxCxCx với x thể hiện là ghế trống. Khi đó, số cách xếp là cách.

TH2: xCxCxCxCxC giống với TH1=> có cách xếp.

TH3: CxxCxCxCxC với xx là hai ghế trống liền nhau.

Chọn 1 học sinh lớp 12A và 1 học sinh lớp 12B vào hai ghế trống đó => cách xếp.

Ba ghế trống còn lại ta sẽ xếp 3 học sinh còn lại của 2 lớp 12A-12B => cách xếp.

Do đó, TH3 có cách xếp.

Ba TH4. CxCxxCxCxC.

TH5. CxCxCxxCxC.

TH6. CxCxCxCxCxx tương tự TH3.

Vậy có tất cả cách xếp cho các học sinh.

Suy ra xác suất cần tính là

9 tháng 10 2018

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5! x 5! =  120 2 .

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5! x 5! =  120 2 .

Theo quy tắc cộng có 120 2 + 120 2 = 2 × 120 2  cách xếp thoả mãn.

Vậy xác suất cần tính  2 5 ! 2 10 ! = 1 126 .

12 tháng 1 2018

Đáp án đúng : C

3 tháng 1 2018

Đáp án C

Số cách xếp ngẫu nhiên là 10!.

Ta tìm số cách xếp thoả mãn:

Đánh số hàng từ 1 đến 10. Có hai khả năng:

5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5!x5!= 120 2

5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5!x5!= 120 2

Theo quy tắc cộng có  120 2 +  120 2 =2x  120 2 cách xếp thoả mãn.

Vậy xác suất cần tính  2 ( 5 ! ) 2 10 ! = 1 126

7 tháng 9 2019

Chọn B

Số phần tử của không gian mẫu là 

Sắp 5 học sinh nam thành một hàng ngang, có 5! cách (tạo ra  khoảng trống).

Chọn 3 khoảng trống trong 6 khoảng trống để xếp 3 nữ, có C 6 3  cách chọn. Khi đó, số cách xếp 3 bạn nữ là  C 6 3 .3! cách.

Vậy xác suất cần tìm là 

31 tháng 5 2018

Số phần tử của không gian mẫu n(Ω)=10!

Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là: n =2–2.9=18432.

Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.

+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.

+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.

+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.

Đáp án B

19 tháng 7 2017

Đáp án B

– Số phần tử của không gian mẫu  n Ω =10!

* Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.

* Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:

+ Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.

+ Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.

xxxx

Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9

Vậy số phần tử của A là:  n =2-2.9=18432.