Cho một đa giác đều 2n đỉnh ( n ≥ 2 , n ∈ N ) . Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45.
A. n = 12
B. n = 10
C. n = 9
D. n = 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật
Đáp án D
Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3
Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là: C n 2
Số tam giác vuông được tạo thành là 4 C n 2
Ta có: 4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.
Đáp án D
Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3
Số đường chéo đi qua tâm là n => số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là: C n 2 .
Số tam giác vuông được tạo thành là: 4 . C n 2 .
Ta có: 4 C n 2 C 2 n 3 = 1 5 ⇒ n = 1 8 .
Gọi A là biến cố để 3 đỉnh tạo thành một tam giác vuông.
Ta có một đa giác đều 2n cạnh có n đường chéo đi qua tâm.
Ta lấy hai đường chéo thì tạo thành một hình chữ nhật.
Mỗi một hình chữ nhật sẽ có bốn tam giác vuông.
Vậy số tam giác vuông tạo thành từ đa giác đều 2n đỉnh là
Đáp án D
Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật có 4 đỉnh là đỉnh của đa giác. Do đó số hình chữ nhật là C n 2
Số tam giác có các đỉnh là 3 trong 2n điểm A1;A2;…;A2n là:
Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2…A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1;A2;…;A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác.
Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng
Theo giả thiết:
⇒n=8.
Chọn C
Đáp án B
Đa giác đều 2n đỉnh có n đường chéo qua tâm. Cứ 2 đường chéo qua tâm tương ứng với 1 hình chữ nhật ⇒ C n 2 = 45 ⇔ n = 10