K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Đáp án B.

Δ : x − 2 1 = y + 3 2 = z − 1 3

Lấy   M 2 ; − 3 ; 1 và  N 3 ; − 1 ; 4    là hai điểm thuộc Δ.

⇒ M ' 0 ; − 3 ; 1 N ' 0 ; − 1 ; 4    lần lượt là hình chiếu của hai điểm M; N trên mặt phẳng (Oxy)

⇒ u d → = M ' N ' → = 0 ; 2 ; 3 ⇒ d : x = 0 y = − 3 + 2 t z = 1 + 3 t

 

7 tháng 8 2018

Đáp án A

*Gọi (Q) là mặt phẳng chứa d và vuông góc với mặt phẳng (Oxy). Để khoảng cách giữa hai đường thẳng d và ∆ nhỏ nhất thì ∆ chính là giao tuyến của hai mặt phẳng (Oxy) và mp (Q).

* Mặt phẳng (Oxy) có phương trình là z = 0 có VTPT  n Oxy →  = (0; 0; 1).

Đường thẳng d đi qua A(1;2; -3) và có VTCP u d →  = (1; -2; 0)

Suy ra, VTPT của (Q) là n Q →  = [ u d → ; n Oxy → ] = (2; 1; 0)

Phương trình mặt phẳng (Q) là: 2(x - 1) + 1(y - 2) + 0(z + 3) = 0

Hay 2x + y -4 =0

* Đường thẳng ∆ cần tìm là giao tuyến của hai mặt phẳng (Oxy) và (Q). Tập hợp các điểm thuộc ∆ là nghiệm hệ phương trình: 

* Đặt x = 1 + t thay vào (1) ta được: y = 4 - 2x = 4 - 2(1 + t) = 2 - 2t

Suy ra, phương trình tham số của đường thẳng ∆ là: 

3 tháng 11 2019

Chọn C

Gọi d là đường thẳng cần tìm.

Đường thẳng cần tìm qua A và nhận  là véc tơ chỉ phương nên có phương trình:

3 tháng 6 2019

Chọn A

Gọi I = d ∩ Δ. Do I Δ nên I (2t + 1; t – 1; -t).

từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2 ; 1 ; 0) nên có phương trình 

25 tháng 8 2018

 

19 tháng 1 2017

4 tháng 10 2017

Đáp án D

Chọn t = - 1 ⇒  Đường thẳng d đi qua điểm - 1 ; 2 ; - 2  và có vecto chỉ phương u   → = 2 ; 1 ; 1  

9 tháng 11 2017

2 tháng 10 2018

Gọi I = d . Do I nên I (2t + 1; t – 1; -t). Suy ra 

Suy ra , từ đó suy ra d có một vectơ chỉ phương là  và đi qua M (2;1; 0) nên có phương trình:

8 tháng 7 2017