K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

Chọn C

Xét hàm số trên đoạn

Ta có ;

Bảng biến thiên

Capture

; .

Để thì

nên .

 

Vậy tổng các phần tử của .

17 tháng 6 2018

15 tháng 8 2018

Đáp án là D

30 tháng 7 2019

8 tháng 3 2018

Chọn C

Xét hàm số  trên đoạn [0;2]

Bảng biến thiên:

với f(0) = m - 20; f(2) = m + 6

Xét hàm số y =  1 4 x 4 - 19 2 x 2 + 30 x + m - 20  trên đoạn [0;2]

+ Trường hợp 1:  Ta có:

  suy ra không có giá trị m.

+ Trường hợp 2:  Ta có:


Vì m nguyên nên 

+ Trường hợp 3: 

Vì m nguyên nên 

Vậy  Tổng các phần tử của S bằng 

15 tháng 12 2019

+ Xét hàm số  f(x) = x3-3x+ m là hàm số liên tục trên đoạn [0; 2] .

Ta có đạo hàm f’ (x) = 3x2- 3 và f’ (x) = 0 khi x= 1 ( nhận )  hoặc x= -1( loại)

+ Suy ra GTLN và GTNN của  f(x) thuộc { f(0); f(1) ; f(2) }={m;m-2; m+2}.

+ Xét hàm số y = x 3 - 3 x + m   trên đoạn [0; 2 ] ta được giá trị lớn nhất của y  là

m a x m ; m - 2 ; m + 1 = 3 .

TH1: m= 3 thì max {1;3;5}= 5 ( loại )

TH2: 

+ Với m= -1. Ta có max {1; 3}= 3 (nhận).

+Với m= 5. Ta có max { 3;5;7}= 7 (loại).

TH3: 

+ Với m= 1. Ta có max {1; 3}= 3 (nhận).

+ Với m= -5. Ta có max {3;5;7}= 7 (loại).

Do đó m= -1 hoặc m= 1

Vậy tập hợp S  phần tử.

Chọn B.

14 tháng 12 2017

 

 

 

 

10 tháng 5 2019

Đáp án B

Xét hàm số f x = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20  trên [0;2] có f ' x = 0 ⇔ x = 2  

Tính f 0 = m - 20 ; f 2 = m + 6 → m a x 0 ; 2 y = m a x [ 0 ; 2 ] f x = m - 20 ; m + 6  

TH1. Với  m a x 0 ; 2 y = m - 20 ⇒ m - 20 ≥ m + 6 m - 20 ≤ 20 ⇔ m ≤ 7 - 20 ≤ m ≤ 20 ⇔ 0 ≤ m ≤ 7  

TH2. Với   m a x 0 ; 2 y = m + 6 ⇒ m - 20 ≤ m + 6 m + 6 ≤ 20 ⇔ m ≥ 7 - 20 ≤ m + 6 ≤ 20 ⇔ 7 ≤ m ≤ 14

Kết hợp với m ∈ ℤ , ta được  m = 0 ; 1 ; 2 ; . . . ; 14 → ∑ m = 105 .

1 tháng 10 2018

Chọn C

19 tháng 6 2021

Sao lại bằng -3 được ạ? 

12 tháng 12 2018

Đáp án B.

Xét f x = x 3 − 3 x + m  trên đoạn 0 ; 2  

Ta có: f ' x = 3 x 3 3 = 0 ⇒ x = 1

Lại có:

f 0 = m ; f 1 = m − 2 ; f 2 = m + 2

Do đó: f x ∈ m − 2 ; m + 2

Nếu

m − 2 ≥ 0 ⇒ Max 0 ; 2 f x = m + 2 = 3 ⇔ m = 1  (loại).

Nếu m − 2 < 0 ⇒ Max 0 ; 2 f x = m + 2 Max 0 ; 2 f x = 2 − m

Ÿ TH1: Max 0 ; 2 f x = m + 2 = 3 ⇔ m = 1 ⇒ 2 − m = 1 < 3 t / m

Ÿ TH2: Max 0 ; 2 f x = 2 − m = 3 ⇔ m = − 1 ⇒ m + 2 = 1 < 3 t / m

Vậy m = 1 ; m = − 1  là giá trị cần tìm.