K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:

$AM.AB=AH^2$
$AN.AC=AH^2$

$\Rightarrow AM.AB=AN.AC$ (đpcm)

b.

Vì $AM.AB=AN.AC\Rightarrow \frac{AM}{AN}=\frac{AC}{AB}$

Xét tam giác $AMN$ và $ACB$ có:

$\widehat{A}$ chung

$\frac{AM}{AN}=\frac{AC}{AB}$ (cmt)

$\Rightarrow \triangle AMN\sim \triangle ACB$ (c.g.c)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Hình vẽ:

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN và ΔACB có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN\(\sim\)ΔACB

27 tháng 10 2023

a: Xét ΔABH vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BA\cdot3,6=6^2=36\)

=>BA=10(cm)

AD+DB=BA

=>AD+3,6=10

=>AD=6,4(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

=>\(HD\cdot10=6\cdot8=48\)

=>HD=4,8(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

\(\widehat{DAE}\) chung

Do đó: ΔADE đồng dạng với ΔACB

5 tháng 5 2022

_____ + H2O --> H2SO4

CuCl2 + NaOH --> NaCl + ____

N2O5 + H2O --> _____

H2 + ___ --> Cu + ___

Fe + ____ --> FeSO4 + H2

BaCl2 + AgNO3 --> _____ + _____

____ + ____ --> Al2O3

CuO + ___ --> Cu + CO2

KMnO4 --> ____ + ____ + _____

Bài làm

a) Vì AH vuông góc với BC

=> Tam giác AHC vuông ở H.

=> \(\widehat{HAC}+\widehat{C}=90^0\)                                 (1) 

Vì HN vuông góc với AC

=> Tam giác HNC vuông ở N

=> \(\widehat{NHC}+\widehat{C}=90^0\)                             (2)

Từ (1) và (2) => \(\widehat{HAC}=\widehat{NHC}\)

Xét tam giác AHN và tam giác ACH có:

\(\widehat{ANH}=\widehat{HNC}\left(=90^0\right)\)

\(\widehat{HAC}=\widehat{NHC}\)

=> Tam giác AHN ~ tam giác ACH ( g - g )

b) Xét tam giác AHB vuông ở H,

Theo định lí Thales có:

\(AB^2=AH^2+HB^2\)

Hay \(15^2=12^2+HB^2\)

\(\Rightarrow225=144+HB^2\)

\(\Rightarrow HB^2=81\)

\(\Rightarrow HB=9\left(cm\right)\)

Xét tam giác AHC vuông ở H có:

\(AC^2=AH^2+HC^2\)

hay \(13^2=12^2+HC^2\)

\(\Rightarrow169=144+HC^2\)

\(\Rightarrow HC^2=25\left(cm\right)\)

\(\Rightarrow HC=5\left(cm\right)\)

Ta có: HB + HC = BC

hay 9 + 5 = BC

=> BC = 14 ( cm )

Đề sai rồi bạn

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)