Tìm x trong các tỉ lệ thức sau: x − 6 x + 4 = 2 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9x-1/4=3/2
=>9x=3/2+1/4
=>9x=7/4
=>x=7/4:9
=>x=7/36
Vậy x=7/36
b)(4x+2):2,5=3,2:0,5
=>(4x+2):2,5=6,4
=>4x+2=6,4.2,5
=>4x+2=16
=>4x=16-2
=>4x=14
=>x=14:4
=>x=7/2
Vậy x=7/2
c) 5,4/x-2=6/7
=>5,4/x=6/7+2
=>5,4/x=20/7
=>x=5,4 :20/7
=>x=1,89
Vậy x= 1,89
d) 0,5:2=3:(2x+7)
=>3:(2x+7)=0,25
=>2x+7=3:0,25
=>2x+7=12
=>2x=12-7
=>2x=5
=>x=5/2
Vậy x=5/2
a) 9x-1/4=3/2
=>9x=3/2+1/4
=>9x=7/4
=>x=7/4:9
=>x=7/36
Vậy x=7/36
b)(4x+2):2,5=3,2:0,5
=>(4x+2):2,5=6,4
=>4x+2=6,4.2,5
=>4x+2=16
=>4x=16-2
=>4x=14
=>x=14:4
=>x=7/2
Vậy x=7/2
c) 5,4/x-2=6/7
=>5,4/x=6/7+2
=>5,4/x=20/7
=>x=5,4 :20/7
=>x=1,89
Vậy x= 1,89
d) 0,5:2=3:(2x+7)
=>3:(2x+7)=0,25
=>2x+7=3:0,25
=>2x+7=12
=>2x=12-7
=>2x=5
=>x=5/2
Vậy x=5/2
a: =>x-2=6,3
=>x=8,3
d:=>|x-3|=14
=>x-3=14 hoặc x-3=-14
=>x=17 hoặc x=-11
a, \(\frac{x-6}{x+4}=\frac{2}{7}\Rightarrow7x-42=2x+8\)ĐK : \(x\ne-4\)
\(\Leftrightarrow5x=50\Leftrightarrow x=10\)(tm)
b, \(\left(x+5\right):2\frac{1}{2}=\frac{40}{x+5}\)ĐK : \(x\ne-5\)
\(\Leftrightarrow\frac{5\left(x+5\right)}{2}=\frac{40}{x+5}\Rightarrow5\left(x+5\right)^2=80\Leftrightarrow\left(x+5\right)^2=16\)
TH1 : \(x+5=4\Leftrightarrow x=-1\)
TH2 : \(x+5=-4\Leftrightarrow x=-9\)
a) \(\left(\frac{1}{3}.x\right):\frac{2}{3}=\frac{7}{4}:\frac{2}{5}\)
\(\left(\frac{1}{3}.x\right):\frac{2}{3}=\frac{35}{8}\)
\(\Rightarrow\frac{1}{3}.x=\frac{35}{8}.\frac{2}{3}\)
\(\Rightarrow\frac{1}{3}.x=\frac{35}{12}\)
\(\Rightarrow x=\frac{35}{12}:\frac{1}{3}\)
\(\Rightarrow x=\frac{35}{4}\)
Vậy \(x=\frac{35}{4}\)
Bài 1:
a.
Ta có tỉ lệ thức: 4,5 x 14,4 = 6 x 10,8
\(\Rightarrow\frac{4,5}{6}=\frac{10,8}{14,4};\frac{4,5}{10,8}=\frac{6}{14,4};\frac{6}{4,5}=\frac{14,4}{10,8};\frac{10,8}{4,5}=\frac{14,4}{6}\)
b.
Ta có tỉ lệ thức 1: 4 x 1024 = 16 x 256
\(\Rightarrow\frac{4}{16}=\frac{256}{1024};\frac{4}{256}=\frac{16}{1024};\frac{16}{4}=\frac{1024}{256};\frac{256}{4}=\frac{1024}{16}\)
Ta có tỉ lệ thức 2: 16 x 64 = 4 x 256
\(\Rightarrow\frac{16}{4}=\frac{256}{64};\frac{16}{256}=\frac{4}{64};\frac{4}{16}=\frac{64}{256};\frac{256}{16}=\frac{64}{4}\)
Bài 2:
Áp dụng t/c DTSBN. ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x+y}{11+7}=\frac{-54}{18}=-3\)
\(\Rightarrow x=11.\left(-3\right)=-33\)
\(\Rightarrow y=7.\left(-3\right)=-21\)
\(a,\dfrac{4}{x}=\dfrac{8}{x+1}\left(x\ne0;x\ne-1\right)\Rightarrow4x+4=8x\\ \Rightarrow x=1\\ b,\dfrac{x}{7}=\dfrac{x+16}{35}\Rightarrow35x=7x+112\\ \Rightarrow28x=112\Rightarrow x=4\\ c,\dfrac{6}{x-3}=\dfrac{7}{x-5}\left(x\ne3;x\ne5\right)\Rightarrow6x-30=7x-21\\ \Rightarrow x=-9\\ d,\dfrac{44-x}{3}=\dfrac{x-12}{5}\Rightarrow220-5x=3x-36\\ \Rightarrow8x=256\Rightarrow x=32\)
a) 2/7 : x = 11/6 : 7/12
2/7 : x = 22/7
x = 2/7 : 22/7
x = 1/11
b) (2 - x)/3 = -3/(x - 2)
(2 - x)(x - 2) = -3.3
-(x - 2)² = -9
(x - 2)² = 9
x - 2 = 3 hoặc x - 2 = -3
*) x - 2 = 3
x = 3 + 2
x = 5
*) x - 2 = -3
x = -3 + 2
x = -1
Vậy x = -1; x = 5
c) (x - 1)/(x + 2) = 2/3
3(x - 1) = 2(x + 2)
3x - 3 = 2x + 4
3x - 2x = 4 + 3
x = 7
a) 2/7 : x = 11/6 : 7/12
2/7 : x = 22/7
x = 2/7 : 22/7
x = 1/11
b) (2 - x)/3 = -3/(x - 2)
(2 - x)(x - 2) = -3.3
-(x - 2)² = -9
(x - 2)² = 9
x - 2 = 3 hoặc x - 2 = -3
*) x - 2 = 3
x = 3 + 2
x = 5
*) x - 2 = -3
x = -3 + 2
x = -1
Vậy x = -1; x = 5
c) (x - 1)/(x + 2) = 2/3
3(x - 1) = 2(x + 2)
3x - 3 = 2x + 4
3x - 2x = 4 + 3
x = 7
\(\begin{array}{l}a)\dfrac{x}{6} = \dfrac{{ - 3}}{4}\\x = \dfrac{{( - 3).6}}{4}\\x = \dfrac{{ - 9}}{2}\end{array}\)
Vậy \(x = \dfrac{{ - 9}}{2}\)
\(\begin{array}{l}b)\dfrac{5}{x} = \dfrac{{15}}{{ - 20}}\\x = \dfrac{{5.( - 20)}}{{15}}\\x = \dfrac{{ - 20}}{3}\end{array}\)
Vậy \(x = \dfrac{{ - 20}}{3}\)
Câu 1:
a)Áp dụng tc dãy tỉ:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{7}=2\Rightarrow y=14\end{cases}\)
b)Áp dụng tc dãy tỉ:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}\frac{x}{5}=2\Rightarrow x=10\\\frac{y}{2}=2\Rightarrow y=4\end{cases}\)
Câu 2:
a)\(\frac{x}{7}=\frac{18}{14}\Rightarrow14x=18\cdot7\)
\(\Rightarrow14x=126\)
\(\Rightarrow x=9\)
b và c đề có vấn đề
Câu 1:
a) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
+) \(\frac{x}{3}=2\Rightarrow x=6\)
+) \(\frac{y}{7}=2\Rightarrow y=14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(6,14\right)\)
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
+) \(\frac{x}{5}=2\Rightarrow x=10\)
+) \(\frac{y}{2}=2\Rightarrow y=4\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(10,4\right)\)
Câu 3:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
+) \(\frac{x}{2}=2\Rightarrow x=4\)
+) \(\frac{y}{4}=2\Rightarrow y=8\)
+) \(\frac{z}{6}=2\Rightarrow z=12\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(4,8,12\right)\)
Câu 4:
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)
Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)