Cho mặt cầu S : x 2 + y 2 + z 2 − 2 x + 4 y − 2 z − 3 = 0 cắt hai mặt phẳng P : x − 2 y + z = 0 và Q : x − z − 2 = 0 theo các đường tròn giao tuyến với bán kính r 1 và r 2 . Khi đó tỉ số r 1 r 2 bằng
A. 3 2
B. 7 3
C. 3 7
D. 3 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Gọi là một vec tơ pháp tuyến của mặt phẳng (P).
Theo đề bài ta có mặt phẳng (P) vuông góc với mặt phẳng (α): x-y+z-4=0 nên ta có phương trình a-b+c=0 ó b=a+c
Phương trình mặt phẳng (P) đi qua A(0;1;2) và có véc tơ pháp tuyến là ax+ (a+c) (y-1)+c (z-2) =0
Khoảng cách từ tâm I (3;1;2) đến mặt phẳng (P) là
Gọi r là bán kính của đường tròn giao tuyến giữa mặt cầu (S) và mặt phẳng (P) ta có r²=16-h² ; r nhỏ nhất khi h lớn nhất.
Dấu “=” xảy ra khi a = -2c. => một véc tơ pháp tuyến là => phương trình mặt phẳng (P) là 2x+y-z+1=0.
Vậy tọa độ giao điểm M của (P) và trục x'Ox là: