Giải và biện luận phương trình với tham số m:
\(\frac{x+m+1}{x+m}-\frac{x+11}{x+10}=\frac{10}{\left(x+m\right)\left(x+10\right)}\)
Một li-ke cho bạn trả lời nhanh và chính xác nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
a) \(\frac{\left(x+m\right)}{x-5}+\frac{\left(x+5\right)}{x-m}=2\)
<=> \(\frac{\left(x+m\right)\left(x-m\right)}{\left(x-5\right)\left(x-m\right)}+\frac{\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)
<=>\(\frac{\left(x+m\right)\left(x-m\right)+\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)
<=>\(\frac{x^2-m^2+x^2-5^2}{\left(x-m\right)\left(x-5\right)}=2\)
<=>2(x-m)(x-5)=2x2-m2-25
Thay m=2, ta có:
2(x-2)(x-5)=2x2-22-25
2x2-14x+20=2x2-29
20+29=2x2-2x2+14x
49=14x
=>x=3,5
Các câu sau cũng tương tự, dài quá không hi
Câu trả lời chính xác là tui không biết làm !