Bài 1: Tìm x ∈ Z để
A= 5/4-x đạt GTLN
B=8-x/x-3 đạt GTNN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\)
căn x-3>=-3
=>5/căn x-3<=-5/3
=>P<=-5/3+1=-2/3
Dấu = xảy ra khi x=0
Bài 1: Sử dụng phép thế
Có x - y = 2 => x = 2 + y
Thay x = 2 + y vào các biểu thức cần tính
Bài 2:
\(P=9-2\left|x-3\right|\le9\) dấu bằng <=> x = 3
\(Q=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\) dấu bằng <=> \(\left(x-2\right)\left(8-x\right)\ge0\)
a) \(\left|x-3\right|\ge0\Leftrightarrow-2\left|x-3\right|\le0\Leftrightarrow9-2\left|x-3\right|\le9\)=> GTLN=9 <=> x=3
b) \(\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)
=> GTNN=6 <=> x=5
\(A=\dfrac{x-3}{x-5}\)
\(A=\dfrac{x-5}{x-5}+\dfrac{2}{x-5}\)
\(A=1+\dfrac{2}{x-5}\)
Để A đạt GTNN thì \(x-5\) đạt giá trị âm lớn nhất.
Do đó: \(x-5=-1\Rightarrow x=4\)
Vậy \(x=4\) thì A đạt GTNN.
Ta có B=\(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|=\left|x-2\right|+\left|4-x\right|+\left|x-3\right|\ge\left|x-2+4-x\right|+\left|x-3\right|=2+\left|x-3\right|\ge2\)
Dấu = xảy ra <=> x=3
c) Ta có C=\(\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|=4\)
Dấu = xảy ra <=> \(2\le x\le3\)
^_^
b) Ta có: \(\hept{\begin{cases}\left|x-2\right|\ge x-2\\\left|x-3\right|\ge0\\\left|x-4\right|=\left|4-x\right|\ge4-x\end{cases}}\)
\(\Rightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge\left(x-2\right)+\left(4-x\right)\)
\(\Rightarrow B\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-3=0\\4-x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Vậy, MinP \(\Leftrightarrow\hept{\begin{cases}x\ge2\\x=3\\x\le4\end{cases}}\)
Bài 3:
Đặt: \(x^2=a\left(a\ge0\right),y^2=b\left(b\ge0\right)\)
Ta có: \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a2b2 = 81
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\) (1)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2)
Từ (1) và (2) => \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a2b2 = 81 nên: (9b)2.b2 = 81 => 81b4 = 81 => b4 = 1=> b = 1 (vì: \(b\ge0\))
=> a = 9.1 = 9
Ta có: x2 = 9 và y2 = 1
=> x = -3, 3
y = -1; 1
Mình làm bài 4, bài 5 làm tương tự bài 4 nhé
Biết rằng: \(\left|A\right|\ge A\)
\(\left|A\right|=\left|-A\right|\) và \(\left|A\right|\ge0\)
Ta có: \(A=\left|x-3\right|+\left|x-5\right|+\left|7-x\right|\ge x-3+0+7-x=4\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)
Với x = 5 thì A đạt gtnn là: 4
a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)
=>-3<m<0
b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)
\(=2m^2+6m+9\)
\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)
\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)
Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)
=>\(m=-\dfrac{3}{2}\)
Bài 1 :
A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN
* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0 (1)
* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0 (2)
Từ (1) và (2) => \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)
- Phân số \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)
- Mà x thuộc Z => 4 - x thuộc Z (c)
- Từ (a), (b), và (c) => 4 - x = 1 => x = 3
Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5