So sánh:
a) 13 2 và 6 3 b) 6 2 + 8 2 và 6 + 8 2
c) 13 2 - 9 2 v à ( 13 - 9 ) 2 d) a 2 + b 2 v à ( a + b ) 2 ( a ∈ N * ; b ∈ N * )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
a)
\(\begin{array}{l}{( - 3)^2}.{( - 3)^4} = 9.81 = 729\\ {( - 3)^6} = ( - 3).( - 3).( - 3).( - 3).( - 3).( - 3)\\ = 9.9.9 = 729\end{array}\)
Vậy \({( - 3)^2}.{( - 3)^4}\) = \({( - 3)^{6}}\)
b)
\(\begin{array}{l}0,6{}^3:0,{6^2} = 0,216:0,36 = 0,6\end{array}\)
Vậy \(0,6{}^3:0,{6^2}\) = \(0,{6}\)
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)
mà 112<117
nên \(4\sqrt{7}< 3\sqrt{13}\)
b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)
\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)
mà \(\dfrac{21}{4}>\dfrac{36}{7}\)
nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)
d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)
\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)
mà 108>64
nên \(3\sqrt{12}>2\sqrt{16}\)
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
a)
b)
+) Quy đồng mẫu số ba phân số $\frac{1}{4};\frac{3}{4};\frac{5}{8}$
$\frac{1}{4} = \frac{{1 \times 2}}{{4 \times 2}} = \frac{2}{8}$
$\frac{3}{4} = \frac{{3 \times 2}}{{4 \times 2}} = \frac{6}{8}$ ; Giữ nguyên phân số $\frac{5}{8}$
Vì $\frac{2}{8} < \frac{5}{8} < \frac{6}{8}$ nên $\frac{1}{4} < \frac{5}{8} < \frac{3}{4}$
Vậy các phân số xếp theo thứ tự từ bé đến lớn là: $\frac{1}{4};\,\,\frac{5}{8};\,\,\frac{3}{4}$
+) Quy đồng mẫu số ba phân số $\frac{2}{3};\,\,\frac{2}{9};\,\,\frac{5}{9}$
$\frac{2}{3} = \frac{{2 \times 3}}{{3 \times 3}} = \frac{6}{9}$ ; Giữ nguyên phân số $\frac{2}{9}$; $\frac{5}{9}$
Vì $\frac{2}{9} < \frac{5}{9} < \frac{6}{9}$ nên $\frac{2}{9} < \frac{5}{9} < \frac{2}{3}$
Vậy các phân số xếp theo thứ tự từ bé đến lớn là $\frac{2}{9};\,\,\frac{5}{9};\,\,\frac{2}{3}$
a: \(6\sqrt{3}=\sqrt{108}>\sqrt{54}=3\sqrt{6}\)
\(\Rightarrow5^{6\sqrt{3}}>5^{3\sqrt{6}}\)
b: \(\sqrt{2}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}}\cdot2^{\dfrac{2}{3}}=2^{\dfrac{1}{2}+\dfrac{2}{3}}=2^{\dfrac{7}{6}}\)
\(\left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}=2^{\left(-1\right)\cdot\left(-\dfrac{4}{3}\right)}=2^{\dfrac{4}{3}}\)
mà \(\dfrac{7}{6}< \dfrac{8}{6}=\dfrac{4}{3}\).
nên \(\sqrt{2}\cdot2^{\dfrac{2}{3}}< \left(\dfrac{1}{2}\right)^{-\dfrac{4}{3}}\).
a) <
b) <
c) >
d) <