Trong các hình chóp lục giác đều nội tiếp trong mặt cầu bán kính bằng 1 thì hình chóp có thể tích Vmax bằng bao nhiêu?
A. Vmax = 16 3 27
B. Vmax = 3 2
C. Vmax = 3
D. Vmax = 4 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi chiều cao của hình chóp là 9 + x , x ≥ 0 , cạnh của hình chóp là a , a ≤ 9 2
Diện tích đáy của hình chóp là: V = 1 3 .2 81 − x 2 9 + x = 2 3 9 − x = 2 3 9 − x 9 + x 9 + x
= 1 3 18 − 2 x 9 + x 9 + x = 1 3 ≤ 1 3 18 − 2 x + 9 + x + 9 + x 3 3 = 1 3 .12 3 = 576
Đáp án B
Ta có: R = S A 2 2 S O = 9
Suy ra S O 2 + O A 2 S O = 18
Mặt khác V S . A B C D = 1 3 S O . S A B C D = 1 3 S O . A C 2 2 = 2 3 S O . O A 2
= 2 3 S O . 18 S O − S O 2 . đặt S O = t 0 < t < 18 , xét hàm số
f t = 2 3 t 2 18 − t = 8 3 . t 2 . t 2 18 − t ≤ 8 3 t + 18 − t 3 3 = 576
Đáp án A
Gọi SH là đường cao hình chóp, a độ dài cạnh đáy và cũng là bán kính đường tròn ngoại tiếp đáy. Lúc đó tâm mặt cầu là I Î SH Þ SH = 1 + IH hoặc SH = 1 – IH.
Đặt IH = x (0 < x < 1) Þ a2 = 1 – x2, đáy hình chóp là ghép của 6 tam giác
loại khi phải tìm Vmax).
Có V’ = 0 Û x = 1 3