Cho ∆ABC ,D là trung điểm AB , đường thẳng qua D và song song với BC cắt AC tại E , qua E kẻ đường thẳng song song với AB và BC cắt BC tại F . Chứng minh rằng :
a) BD = EF
b) E là trung điểm của AC
c) DF || AC
d) DF = 1/2 AC
Mọi người vẽ hình và ghi giả thiết và kết luận hộ mình nha xin mọi người giải hộ mình đó mình đang cần gấp
Cứng đờ tay luôn rồi, khổ quá:((
a) Xét ΔDBFΔDBF và ΔFED:ΔFED:
DF:cạnh chung
ˆBDF=ˆEFDBDF^=EFD^(AB//EF)
ˆBFD=ˆEDFBFD^=EDF^(DE//BC)
=> ΔBDF=ΔEFD(g−c−g)ΔBDF=ΔEFD(g−c−g)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: ˆDAE+ˆAED+ˆEDA=180oDAE^+AED^+EDA^=180o (Tổng 3 góc trong 1 tam giác)
Lại có: ˆAED+ˆDEF+ˆFEC=180oAED^+DEF^+FEC^=180o
Mà ˆDEF=ˆEDADEF^=EDA^(AB//EF)
=>ˆDAE=ˆFECDAE^=FEC^
Xét ΔDAEΔDAE và ΔFEC:ΔFEC:
DA=FE(=BD)
ˆDAE=ˆEFC(=ˆDBF)DAE^=EFC^(=DBF^)
ˆDAE=ˆFECDAE^=FEC^ (cmt)
=>ΔDAE=ΔFEC(g−c−g)ΔDAE=ΔFEC(g−c−g)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm