Cho số phức z thỏa mãn z + 1 - i = z - 3 i . Tính môđun lớn nhất w m a x của số phức w = 1 2
A. w m a x = 7 5 10
B. w m a x = 2 5 7
C. w m a x = 4 5 7
D. w m a x = 9 5 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Đặt suy ra tập hợp các điểm M(z) = (x;y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5
Ta có
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung
Do đó
Đáp án B
z = x + y i , ( x , y ∈ ℝ ) ⇒ P = x + 2 2 + y 2 − x 2 - y - 1 2 = 4 x + 2 y + 3 z − 3 − 4 i = 5 ⇔ x - 3 2 + y - 4 2 = 5
Đặt x = 3 + 5 sin t , y = 4 + 5 cost thỏa mãn ( x − 3 ) 2 + ( y − 4 ) 2 = 5
Đáp án B
z = x + y i , ( x , y ∈ R ) ⇒ P = x + 2 2 + y 2 - x 2 - y - 1 2 = 4 x + 2 y + 3 z - 3 - 4 i = 5 ⇔ x - 3 2 + y - 4 2 = 5
Đặt x = 3 + 5 sin t , y = 4 + 5 cos t thỏa mãn x - 3 2 + y - 4 2 = 5
⇒ P = 4 5 sin t + 2 5 cos t + 23 f t = 4 5 sin t + 2 5 cos t f t 10 = 2 5 5 sin t + 5 5 cos t
Đ ặ t c o s u = 2 5 5 sin u = 5 5 ⇒ f t 10 = sin t + u ⇒ - 1 ≤ f t 10 ≤ 1 ⇒ - 10 ≤ f t ≤ 10 ⇒ 13 ≤ P ≤ 33 ⇒ w = 1258
Đáp án B.
Đặt z = x + y i x , y ∈ ℝ suy ra tập hợp các điểm M(z) = (x,y) là đường tròn (C) có tâm I(3;4) và bán kính R = 5 .
Ta có P = z + 2 2 - z - i 2 = x + 2 + y i 2 - x + y - 1 i 2 = x + 2 2 + y 2 - x 2 - y - 1 2
= x 2 + y 2 + 4 x + 4 - x 2 - y 2 + 2 y - 1 = 4 x + 2 y + 3 → ∆ : 4 x + 2 y + 3 - P = 0 .
Ta cần tìm P sao cho đường thẳng ∆ và đường tròn (C) có điểm chung ⇔ d I ; ∆ ≤ R .
⇔ 4 . 3 + 2 . 4 + 3 - P 4 2 + 2 2 ≤ 5 ⇔ 23 - P ≤ 10 ⇔ - 10 ≤ 23 - P ≤ 10 ⇔ 13 ≤ P ≤ 33 .
Do đó, m a x P = 33 m i n P = 13 → w = M + m i = 33 + 13 i ⇒ w = 1258 .
Chọn B