Cho S : x 2 + y 2 + z 2 = 3 và d : x - 1 2 = y + 1 - 2 = z - 1 . Biết d ∩ S = E , F . Tính EF.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cauchy schwarz dạng engel ta có :
\(VP=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\le\frac{\left(x+y+z\right)^2}{3}=3\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy \(Max_S=3\)khi \(x=y=z=1\)
ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3
= x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)
= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1
=> x+y = 0 hoặc xy +z = 0
Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013)
Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1
x = 1 => z = -y làm tương tự như trên
* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ
Chọn đáp án A