Trong không gian cho tam giác ABC vuông tại A có A B = a và B C = 2 a . Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A. πa 3
B. 3 πa 3
C. 3 3 πa 3
D. 2 3 πa 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ta có chiều cao của khối nón bán kính hình tròn đáy lần lượt là
h = AB = a và r = AC =
Suy ra thể tích của khối nón là
Phân tích phương án nhiễu.
Phương án B: Sai do HS thiếu 1 3 trong công thức tính thể tích.
Phương án C: Sai do HS xác định h = a 3 và bán kính đáy r = a nên
Phương án D: Sai do HS nhớ sai công thức tính thể tích khối nón
a, S x q N 1 = πAC . BC = π . b . b 2 + c 2 = S 1
S x q N 2 = πA B . BC = π . c . b 2 + c 2 = S 2
=> S 1 ≠ S 2
b, V N 1 = 1 3 π . AC 2 . AB = 1 3 b 2 c
V N 2 = 1 3 π . A B 2 . A C = 1 3 c 2 b
=> V N 1 ≠ V N 2
Chọn A.
(h.2.63) Độ dài đường sinh l bằng độ dài cạnh BC của tam giác vuông ABC.
Theo định lý Py-ta-go, ta có:
BC 2 = AB 2 + AC 2 = a 2 + 3 a 2 = 4 a 2
⇒ BC = 2a.
Vậy độ dài đường sinh của hình nón là l = 2a.
Chọn đáp án D
Phương pháp
Sử dụng công thức tính thể tích khối nón có bán kính đáy r và đương cao h là
Cách giải
Quay tam giác ABC quanh đường thẳng AB ta được khối nón có bán kính đáy r=AC=b và đường cao h=AB=c. Khi đó thể tích của khối nón bằng
Đáp án A