Cho hình lập phương S.ABCD có cạnh bằng a. Gọi K là trung điểm của DD'. Khoảng cách giữa hai đường thẳng CK và A'D bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Phương pháp: Phương pháp tọa độ.
Cách giải: Chọn hệ trục tọa độ như hình vẽ, chọn a = 1
Chọn D.
Cách 1: Trong mặt phẳng (CDD'C) gọi P là giao điểm của CK và C'D'.
Suy ra KD' là đường trung bình của ∆ PCC' => D' là trung điểm của PC'.
Trong mặt phẳng (A'B'C'D') gọi M là giao điểm của PB' và A'D'
Ta có
Tứ diện PCC'B' có C'P, C'B và C'B đôi một vuông góc với nhau.
Đặt thì
Suy ra
Vậy
Cách 2: (Đã học chương 3, HH12)
Chọn hệ trục tọa độ sao cho: D(0;0;0), trục Ox trùng với cạnh DC, trục Oy trùng với cạnh DA, trục Oz trùng với cạnh DD', chọn a = 1.
Ta có :
Chọn đáp án B
Gọi M là trung điểm BB'
Gắn hệ trục tọa độ như hình vẽ:
Ta có: D(0;a;0), A'(0;0;a), C(a;a;0), M(a;0; a 2 )
Khi đó:
Mặt phẳng (A’MD) đi qua điểm và nhận làm vectơ pháp tuyến là:
Khi đó:
Chọn B
Gọi M là trung điểm BB'. Ta có: CK // A'M => CK // (A'MD)
Khi đó d(CK, A'D) = d (CK, (A'MD)). Gắn hệ trục tọa độ như hình vẽ:
Ta có: A(0;0;0), B(a;0;0), D(0;a;0), A'(0;0;a), B'(a;0;a), C(a;a;0), M(a;0;a/2).
Vậy mặt phẳng (A'MD) nhận làm vectơ pháp tuyến.
Phương trình (A'MD) là x + 2y + 2z - 2a = 0
Do đó:
Chọn D