Cho đường tròn tâm O có đường kính AB=2a nằm trong mặt phẳng (P). Gọi I là điểm đối xứng với O qua A. Lấy điểm S sao cho SI vuông góc với mặt phẳng (P) và SI=2a. Tính bán kính R của mặt cầu qua đường tròn tâm O và điểm S.
A. R = a 65 4
B. R = a 65 16
C. R = a 5
D. R = 7 a 4
Đáp án là A
* Gọi J là tâm mặt cầu qua đường tròn tâm O và điểm S => J nằm trên đường trung trực của AB và SA
*Tam giác SIA vuông tại I.
*Ta có: Góc N và S bằng nhau vì cùng phụ với góc S A N ^
* Tam giác AKN vuông tại K
* Tam giác OJN vuông tại O
* Tam giác AOJ vuông tại O
Cách 2
Gắn hệ trục toạ độ Oxy sao cho A, B, O thuộc tia Ox, S thuộc tia Oy và giả sử a = 1.
Khi đó A(1;0), B(3;0), S(0;2)
là đường tròn tâm J qua 3 điểm A, S, B
Suy ra: