K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

Đặt phần dư là \(ax+b\)

\(\Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x^2\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x\right)\left(1+x\right)\cdot a\left(x\right)+ax+b\)

Thay \(x=1\Leftrightarrow a+b=5\left(1\right)\)

Thay \(x=-1\Leftrightarrow b-a=-3\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

Vậy đa thức dư là \(4x+1\)

20 tháng 11 2021

Đặt phần dư là ax+bax+b

⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b

Thay x=1⇔a+b=5(1)x=1⇔a+b=5(1)

Thay x=−1⇔b−a=−3(2)x=−1⇔b−a=−3(2)

(1)(2)⇔{a=4b=1(1)(2)⇔{a=4b=1

Vậy đa thức dư là 4x+1

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

6 tháng 5 2020

Khi f( x) : ( x - 2 ) ( x - 3) thì còn đa thức dư vì ( x - 2 ) ( x - 3 ) có bậc cao nhất là 2 

=> đa thức dư có bậc cao nhất là 1 

=> G/s: đa thức dư là: r(x) = a x + b 

Ta có: f ( x ) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + ax + b 

Vì f ( x ) chia ( x - 2 ) dư 2016 

=> f ( 2 ) = 2016   => a.2 + b = 2016 (1) 

Vì f(x ) chia ( x - 3 ) dư 2017 

=> f ( 3) = 2017 => a.3 + b  = 2017 (2) 

Từ (1) ; (2) => a = 1; b = 2014 

=> Đa thức f(x) = ( x - 2 )( x - 3 ) ( x^2 + 1 ) + x + 2014

và đa thức dư là: x + 2014

6 tháng 11 2016

F(x) chia x-1 dư 2 nên F(x)= (x-1).Q(x)+2

=> F(1)= 2

F(x) chia cho x-2 dư 3 nên F(x)= (x-2).Q(x)+3

=> F(2)= 3

ta có F(x)= (x-1)(x-2).Q(x)+ax+b

với x=1 ta có F(1)= a+b

với x=2 ta có F(2)= 2a+b

=> a+b=2 (1)

    2a+b=3 (2)

trừ vế với vế của (1) và (2) ta dc 

a+b-(2a+b)=2-3

=> a+b-2a-b= -1

=> -a= -1

=> a=1

thay vào (1) ta có a+b= 2 => 1+b=2 => b=1

vậy số dư của đa thức F(x) cho (x-1)(x-2) là x

6 tháng 11 2016

số dư là x+1 nha mk nhầm

1 tháng 5 2021

quá đơn giản

13 tháng 5 2021

đơn giản thì trả lời đi , fly color à bạn :))) 

AH
Akai Haruma
Giáo viên
25 tháng 6

Lời giải:
Gọi đa thức ban đầu là $Q(x)$. Khi chia cho $(x-1)(x-2)$ ta được dư là $E(x)$ và dư $ax+b$ với $a,b$ là số thực.

Ta có:

$Q(x)=(x-1)(x-2)E(x)+ax+b$

$Q(1)=a+b=2$

$Q(2)=2a+b=3$

$\Rightarrow a=1; b=1$

Vậy dư trong phép chia $Q(x)$ cho $(x-1)(x-2)$ là $x+1$