Cho 5 số 1, 2, 3, 4, 6. Lập các số tự nhiên có 3 chữ số đôi một khác nhau từ 5 chữ số đã cho. Tính tổng của các số lập được.
A. 12321.
B. 21312.
C. 12312.
D. 21321
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ko xuất hiện số 0 nên tính toán nhẹ được 1 nửa
Lập được \(P_5^3=60\) số
Do vai trò của các chữ số là như nhau, nên số lần xuất hiện của mỗi chữ số ở mỗi hàng (trăm, chục, đơn vị) là như nhau. Có 60 số và 5 chữ số, vì thế, ở mỗi hàng mỗi chữ số sẽ xuất hiện \(60:5=12\) lần (ví dụ như số 2 sẽ xuất hiện ở hàng đơn vị tổng cộng 12 lần, ở hàng trăm cũng 12 lần...)
Do đó tổng giá trị các chữ số ở hàng đơn vị là:
\(12.1+12.2+12.3+12.4+12.6=12\left(1+2+3+4+6\right)=192\)
Ở hàng chục, giá trị của 1 chữ số gấp 10 lần hàng đơn vị (ví dụ số 32 thì số 2 chỉ có giá trị là 2, nhưng ở số 23 thì số 2 có giá trị là 20), do đó, tổng giá trị các chữ số ở hàng chục là:
\(10.\left(12.1+12.2+12.3+12.4+12.6\right)=10.12\left(1+2+3+4+6\right)\)
Tương tự, tổng giá trị ở hàng trăm là:
\(100.12.\left(1+2+3+4+6\right)\)
Tổng các chữ số lập được là:
\(\left(1+10+100\right).12.\left(1+2+3+4+6\right)=21312\)
Tổng quát: cho n chữ số 1,2,... (ko xuất hiện chữ số 0), lập các số tự nhiên có m<n chữ số khác nhau, vậy tổng lập được là:
\(\underbrace{11...1}_{\text{m chữ số 1}}\times\dfrac{P_n^m}{n}\times(1+2+...)\)
Đáp án B.
Chọn 3 chữ số trong 5 chữ số có C 5 3 = 10 cách.
Và sắp xếp 3 chữ số ở trên theo thứ tự có 3! = 6 cách.
Suy ra có 6.10 = 60 số có 3 chữ số đôi một khác nhau.
Tổng các chữ số 1, 2, 3, 4, 6 là 16 và gọi số cần tìm có dạng a b c
Khi đó, mỗi chữ số 1, 2, 3, 4, 6 sẽ xuất hiện ở 3 vị trí a,b,c tương ứng là 12 lần.
Vậy tổng của các số lập được là 12.16.(102+101+100) = 21312
Chọn B
Số phần tử của tập hợp E là
Vì
Mà chia hết cho 3 nên khi lấy ra 6 chữ số thỏa điều kiện ta phải loại ra một số chia hết cho 3. Ta có 3 trường hợp sau:
1) Trường hợp 1:
Loại bỏ số 0, khi đó a + b = c + d = e + f = 7
Bước 1: Chia ra làm 3 cặp số có tổng bằng 7 là : (1;6), (2;5), (3;4) có 1 cách chia.
Bước 2: Chọn a có 6 cách; chọn b có 1 cách; chọn c có 4 cách; chọn d có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 6.1.4.1.2.1 = 48 cách.
Trường hợp này có 48 số.
2) Trường hợp 2:
Loại bỏ số 3, khi đó a + b = c + d = e + f = 6
Bước 1: Chia ra làm 3 cặp số có tổng bằng 6 là : (0;6), (1;5), (2;4) có 1 cách chia.
Bước 2: Chọn a có 5 cách (vì có số 0); chọn b có 1 cách; chọn c có 4 cách; chọn d có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 5.1.4.1.2.1 = 40 cách.
Trường hợp này có 40 số.
3) Trường hợp 3:
Loại bỏ số 6, khi đó a + b = c + d = e + f = 5. Tương tự như trường hợp 2, có 40 số.
Vậy trong tập hợp E có tất cả 48 + 40 + 40 = 128 số có dạng a b c d e f ¯ sao cho a + b = c + d = e + f
Xác suất cần tìm là:
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Đáp án B
Gọi số cần lập là a b c d ¯
TH1: d = 0 suy ra có 5.4.3 = 60 số
TH2: d = 2 ; 4 suy ra có 2.4.4.3 = 96 số
Theo quy tắc cộng có: 60 + 96 = 156 số
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách