Thể tích khối chóp tứ giác đều có tất cả các cạnh bằng a là
A. 2 a 3 3
B. 3 a 3 3
C. 2 a 3 6
D. 2 a 3 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Gọi khối chóp tứ giác đều là S.ABCD
Gọi O là tâm của đáy Do là khối chóp tứ giác đều nên SO ⊥ (ABCD)
Vậy SO là chiều cao của khối chóp S.ABCD.
Xét tam giác vuông SOB, ta có:
Thể tích khối chóp là:
Đáp án A
Diện tích đáy ABCD là a2.
Ta có
S O 2 = S B 2 - O B 2 = a 2 - a 2 2 2 = a 2 2
Suy ra S O = a 2 2
Thể tích khói chóp cần tìm là
V = 1 3 . a 2 2 . a 2 = a 3 2 6
Diện tích mặt đáy là:\(\dfrac{a^2.\sqrt{3}}{4}\)
Thể tích khối lăng trụ là: \(a.\dfrac{a^2.\sqrt{3}}{4}=\dfrac{a^3.\sqrt{3}}{4}\)
\(\Rightarrow A\)
Đáp án B
Ta có: S d = a 2 ; A C = a 2 ⇒ a 2 2
Khi đó: S O = S A 2 − O A 2 = a 2 2
Suy ra: V = 1 3 S H . S A B C D = a 3 2 6
Đáp án D
Gọi khối chóp tứ giác đều đó là S. ABCD.
Gọi O là giao điểm hai đường chéo hình vuông ABCD, ta có SO là đường cao hình chóp.
S O = S A 2 - A O 2 = a 2 - a 2 2 2 = a 2 2
S A B C D = a 2
Vậy thể tích cần tìm là:
V = 1 3 . S A B C D . S O = 1 3 a 2 . a 2 2 = a 3 2 6
Đáp án là C
Gọi khối chóp tứ giác đều là S.ABCD
Gọi O là tâm của đáy ABCD. Do S.ABCD là khối chóp tứ giác đều nên SO ⊥ (ABCD)
Vậy SO là chiều cao của khối chóp S.ABCD.
Xét tam giác vuông SOB, ta có
Thể tích của khối chóp S.ABCD là