K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2017

(x -  2  ) + 3( x 2  – 2) = 0 ⇔ (x -  2  )+ 3(x +  2  )(x -  2  ) = 0

⇔ (x -  2  )[1 + 3(x +  2  )] = 0 ⇔ (x -  2  )(1 + 3x + 3 2  ) = 0

⇔ x -  2  = 0 hoặc 1 + 3x + 3 2  = 0

x -  2  = 0 ⇔ x =  2

1 + 3x + 3 2  = 0 ⇔ x = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy phương trình có nghiệm x =  2  hoặc x = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

26 tháng 3 2017

2 x 2  + 5x + 3 = 0 ⇔ 2 x 2  + 2x + 3x + 3 = 0

⇔ 2x(x + 1) + 3(x + 1) = 0 ⇔ (2x + 3)(x + 1) = 0

⇔ 2x + 3 = 0 hoặc x + 1 = 0

      2x + 3 = 0 ⇔ x = -1,5

      x + 1 = 0 ⇔ x = -1

Vậy phương trình có nghiệm x = -1,5 hoặc x = -1

24 tháng 12 2017

x 2  – 3x + 2 = 0 ⇔  x 2  – x – 2x + 2 = 0

⇔ x(x – 1) – 2(x – 1) = 0 ⇔ (x – 2)(x – 1) = 0

⇔ x – 2 = 0 hoặc x – 1 = 0

       x – 2 = 0 ⇔ x = 2

      x – 1 = 0 ⇔ x = 1

Vậy phương trình có nghiệm x= 2 hoặc x = 1

12 tháng 2 2018

Tham khảo bài này :

(3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy x = -1/3 hoặc x = -5

12 tháng 2 2018

\(a,x^2+10x+25-4x\left(x+5\right)=0.\)

\(\Leftrightarrow\left(x+5\right)^2-4x\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(5-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\5-3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)

\(b,\left(4x-5\right)^2-2\left(16x^2-25\right)=0\)

\(\Leftrightarrow\left(4x-5\right)^2-2\left(4x+5\right)\left(4x-5\right)=0\)

\(\Leftrightarrow-\left(4x-5\right)\left(4x+15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\4x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-\frac{15}{4}\end{cases}}}\)

4 tháng 6 2019

Ta có:  x + 1 3 –x +1 = (x -1)(x -2)

⇔ x 3  +3 x 2 +3x +1 –x +1 =  x 2  -2x –x +2

⇔  x 3  +2 x 2  +5x = 0 ⇔ x( x 2 + 2x + 5) =0

⇔ x =0 hoặc  x 2  +2x +5 =0

Giải phương trình  x 2  +2x +5 =0

∆ ’ =  1 2 - 1.5 = 1 - 5 = -4 < 0 ⇒ phương trình vô nghiệm

Vậy phương trình đã cho có 1 nghiệm : x=0

15 tháng 7 2017

x 2  – 5 = (2x -  5  )(x +  5  )

⇔ (x +  5  )(x -  5 ) = (2x -  5  )(x +  5  )

⇔ (x +  5  )(x -  5  ) – (2x -  5 )(x +  5  ) = 0

⇔ (x +  5  )[(x -  5  ) – (2x -  5  )] = 0

⇔ (x +  5 )(- x) = 0 ⇔ x + 5 = 0 hoặc – x = 0

x +  5  = 0 ⇔ x = -  5

x = 0 ⇔ x = 0

Vậy phương trình có nghiệm x = -  5  hoặc x = 0.

18 tháng 4 2017

Với a = 1, ta có phương trình:  x 3 + a x 2 - 4 x - 4 = 0

⇒ x 2 (x + 1) – 4(x + 1) = 0 ⇒ ( x 2  – 4)(x + 1) = 0

⇒ (x + 2)(x – 2)(x + 1) = 0

⇒ x + 2 = 0 hoặc x – 2 = 0 hoặc x + 1 = 0

      x + 2 = 0 ⇒ x = -2

      x – 2 = 0 ⇒ x = 2

      x + 1 = 0 ⇒ x = -1

Vậy phương trình có nghiệm: x = -2 hoặc x = 2 hoặc x = -1.

24 tháng 2 2021

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

13 tháng 2 2018

3x3 - 3x2- 6x = 0

x ( 3x2 - 3x - 6 ) = 0

x [ 3x2 + 3x - 6x - 6 ] = 0

x [ 3x ( x + 1 ) - 6 ( x + 1 ) ] = 0

x ( 3x - 6 ) ( x + 1 ) = 0

<=> x = 0 hoặc 3x - 6 = 0 hoặc x + 1 = 0

1) x = 0

2) 3x - 6 = 0 <=> x = 2

3) x + 1 = 0  <=> x = -1

Vậy taaph nghiệm của phương trình đã cho S={0 : -1 : 2 }

13 tháng 2 2018

\(3x^3-3x^2-6x=0\)

\(3x^3-6x^2+3x^2-6x=0\)

\(3x^2.\left(x-2\right)+3x\left(x-2\right)=0\)

\(\left(3x^2+3x\right)\left(x-2\right)=0\)

\(3x\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow3x=0\)    \(\Rightarrow x=0\)hoặc \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)